Sets are often denoted using **roster notation** in which members are specified explicitly in a comma-delimited list surrounded by curly braces. Alternatively, **abstraction** (or **set-builder notation**) defines sets using an **entrance requirement**. Examples of the set of prime numbers less than $10$:
* Roster notation: $\{2, 3, 5, 7\}$
* Set-builder notation: $\{x \mid x <10 \landx \text{isprime}\}$
If two sets have exactly the same members, then they are equal: $$\forall A, \forall B, (\forall x, x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
Let $A$ and $B$ be sets. Proving the following is equivalent to showing what class is a set? $$\exists C, \forall y, (y \in C \Leftrightarrow y = \{x\} \times B \text{ for some } x \in A)$$
Back: $\{\{x\} \times B \mid x \in A\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
For any sets $u$ and $v$, there exists a set having as members just $u$ and $v$: $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$
How is the pair set $\{u, v\}$ defined using set-builder notation?
Back: $\{x \mid x = u \lor x = v\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715900348148-->
END%%
## Union Axiom
### Preliminary Form
For any sets $a$ and $b$, there exists a set whose members are those sets belonging either to $a$ or to $b$ (or both): $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$
%%ANKI
Basic
What does the union axiom (preliminary form) state?
For any set $A$, there exists a set $B$ whose elements are exactly the members of the members of $A$: $$\forall A, \exists B, \forall x, x \in B \Leftrightarrow (\exists b \in B, x \in b)$$
%%ANKI
Basic
What does the union axiom (general form) state?
Back: For any set $A$, there exists a set $B$ whose elements are exactly the members of the members of $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007845-->
END%%
%%ANKI
Basic
How is the union axiom (general form) expressed using first-order logic?
For any set $a$, there is a set whose members are exactly the subsets of $a$: $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
%%ANKI
Basic
What does the power set axiom state?
Back: For any set $a$, there exists a set whose members are exactly the subsets of $a$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034356-->
END%%
%%ANKI
Basic
How is the power set axiom expressed using first-order logic?
Back: $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034361-->
END%%
%%ANKI
Basic
The following encodes which set theory axiom? $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
Back: The power set axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034368-->
END%%
%%ANKI
Basic
How is $x \subseteq a$ rewritten using first-order logic and $\in$?
Back: $\forall t, t \in x \Rightarrow t \in a$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034375-->
END%%
%%ANKI
Basic
How is the power set of set $a$ denoted?
Back: $\mathscr{P}{a}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034381-->
END%%
%%ANKI
Basic
How is the power set of set $a$ defined using set-builder notation?
Back: $\{x \mid x \subseteq a\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715900348160-->
END%%
## Subset Axioms
For each formula $\_\_\_$ not containing $B$, the following is an axiom: $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
Back: For each formula $\_\_\_$ not containing $B$, the following is an axiom: $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312858-->
END%%
%%ANKI
Basic
Let $\_\_\_$ be a wff excluding $B$. How is its subset axiom stated in first-order logic?
Back: $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312864-->
END%%
%%ANKI
Basic
The following encodes which set theory axiom(s)? $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
Back: The subset axioms.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312869-->
END%%
%%ANKI
Basic
Which axioms prove the existence of the union of two sets?
Back: The union axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312873-->
END%%
%%ANKI
Basic
Which axioms prove the existence of the intersection of two sets?
Back: The subset axioms.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312876-->
END%%
%%ANKI
Basic
How is the intersection of sets $A$ and $B$ denoted?
Back: $A \cap B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312880-->
END%%
%%ANKI
Basic
How is the intersection of sets $a$ and $b$ defined using set-builder notation?
Back: $\{x \mid x \in a \land x \in b\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312884-->
END%%
%%ANKI
Basic
Which axioms prove the existence of the relative complement of two sets?
Back: The subset axioms.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312888-->
END%%
%%ANKI
Basic
Given sets $A$ and $B$, what does $A - B$ denote?
Back: The relative complement of $B$ in $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312893-->
END%%
%%ANKI
Basic
How is the relative complement of set $B$ in $A$ denoted?
Back: $A - B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312897-->
END%%
%%ANKI
Basic
How is the relative complement of set $b$ in $a$ defined using set-builder notation?
Back: $\{x \mid x \in a \land x \not\in b\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312901-->
END%%
%%ANKI
Cloze
Union is to the {union axiom} whereas intersection is to the {subset axioms}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312905-->
END%%
%%ANKI
Basic
The subset axioms ensure we do not construct what kind of mathematical object?
This axiom assumes the existence of some choice function capable of selecting some element from a nonempty set. Note this axiom is controversial because it is non-constructive: there is no procedure we can follow to decide which element was chosen.
%%ANKI
Basic
Why is the Axiom of Choice named the way it is?
Back: It assumes the existence of some choice function.
Reference: “Axiom of Choice,” in _Wikipedia_, July 8, 2024, [https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262](https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262).
<!--ID: 1720964209614-->
END%%
%%ANKI
Basic
In Russell's analogy, why is AoC unnecessary to pick left shoes from an infinite set of shoe pairs?
Back: The choice function can be defined directly, i.e. as "pick left shoe".
Reference: “Axiom of Choice,” in _Wikipedia_, July 8, 2024, [https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262](https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262).
<!--ID: 1720964209620-->
END%%
%%ANKI
Basic
In Russell's analogy, why is AoC necessary to pick socks from an infinite set of sock pairs?
Back: There is no choice function to choose/prefer one sock from/over the other.
Reference: “Axiom of Choice,” in _Wikipedia_, July 8, 2024, [https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262](https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262).
<!--ID: 1720964209624-->
END%%
%%ANKI
Basic
What objects does Russell's analogy use when explaining AoC?
Back: Pairs of shoes vs. pairs of (indistinguishable) socks.
Reference: “Axiom of Choice,” in _Wikipedia_, July 8, 2024, [https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262](https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262).
AoC (relation form) posits the existence of what mathematical object?
Back: A function.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720964209631-->
END%%
%%ANKI
Basic
Given relation $R$, AoC implies existence of function $F$. How does $F$ relate to $R$?
Back: $F \subseteq R$ and $\mathop{\text{dom}} F = \mathop{\text{dom}} R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720964209636-->
END%%
### Infinite Cartesian Product Form
For any set $I$ and function $H$ with domain $I$, if $H(i) \neq \varnothing$ for all $i \in I$, then $\bigtimes_{i \in I} H(i) \neq \varnothing$.
%%ANKI
Basic
What does the Axiom of Choice (infinite Cartesian product form) state?
Back: For any set $I$ and function $H$ with domain $I$, if $H(i) \neq \varnothing$ for all $i \in I$, then $\bigtimes_{i \in I} H(i) \neq \varnothing$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720964209640-->
END%%
%%ANKI
Basic
What is the antecedent used in AoC (infinite Cartesian product form)?
Back: $H(i) \neq \varnothing$ for all $i \in I$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720964209644-->
END%%
%%ANKI
Basic
What is the consequent used in AoC (infinite Cartesian product form)?
Back: $\bigtimes_{i \in I} H(i) \neq \varnothing$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
* “Axiom of Choice,” in _Wikipedia_, July 8, 2024, [https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262](https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262).
* “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).