Notes on hashing and unary/binary x86 ops.
parent
a81dcdf176
commit
16ffe8d4ef
|
@ -309,7 +309,7 @@
|
|||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||
"set/index.md": "923225a165d52476bee68d36ac2e4db3",
|
||||
"set/index.md": "85eef335afe27f8c0308c9ef5aa5d3ca",
|
||||
"set/graphs.md": "4bbcea8f5711b1ae26ed0026a4a69800",
|
||||
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
||||
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
||||
|
@ -328,9 +328,9 @@
|
|||
"_journal/2024-03-22.md": "8da8cda07d3de74f7130981a05dce254",
|
||||
"_journal/2024-03/2024-03-21.md": "cd465f71800b080afa5c6bdc75bf9cd3",
|
||||
"x86-64/declarations.md": "75bc7857cf2207a40cd7f0ee056af2f2",
|
||||
"x86-64/instructions.md": "c447f09c6b0ad504726c3232ff5871b4",
|
||||
"x86-64/instructions.md": "6f18c3e6d01c80dc5ce6ec05c66ff627",
|
||||
"git/refs.md": "e20c2c9b14ba6c2bd235416017c5c474",
|
||||
"set/trees.md": "27bba3f28c31ad9effe9a99a43991bd4",
|
||||
"set/trees.md": "c29347ec0ac2e8d5339514c869ecaedf",
|
||||
"_journal/2024-03-24.md": "1974cdb9fc42c3a8bebb8ac76d4b1fd6",
|
||||
"_journal/2024-03/2024-03-23.md": "ad4e92cc2bf37f174a0758a0753bf69b",
|
||||
"_journal/2024-03/2024-03-22.md": "a509066c9cd2df692549e89f241d7bd9",
|
||||
|
@ -432,7 +432,7 @@
|
|||
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
||||
"git/remotes.md": "2208e34b3195b6f1ec041024a66fb38b",
|
||||
"programming/pred-trans.md": "7006b05654a0485472166e81700c98f1",
|
||||
"programming/pred-trans.md": "9ea72ae99f4de83531b27f4621d21616",
|
||||
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
||||
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||
"_journal/2024-05/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||
|
@ -443,8 +443,15 @@
|
|||
"_journal/2024-05/2024-05-15.md": "4e6a7e6df32e93f0d8a56bc76613d908",
|
||||
"logic/pred-logic.md": "c23c3da8756ac0ef17b9710a67440d84",
|
||||
"logic/prop-logic.md": "f7d3ae42989c1c226c40c8354a546264",
|
||||
"_journal/2024-05-17.md": "6e8033da97f16d9ce32b4d5762bcd573",
|
||||
"_journal/2024-05/2024-05-16.md": "9fdfadc3f9ea6a4418fd0e7066d6b10c"
|
||||
"_journal/2024-05-17.md": "fb880d68077b655ede36d994554f3aba",
|
||||
"_journal/2024-05/2024-05-16.md": "9fdfadc3f9ea6a4418fd0e7066d6b10c",
|
||||
"_journal/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c",
|
||||
"hashing/direct-addressing.md": "05c93ad0fe50092f2abff696888147d0",
|
||||
"hashing/index.md": "340f8583eb51eaef011e3302bddb7ff8",
|
||||
"set/classes.md": "a0bb2532284dea67bbfe7c1e3d714fd1",
|
||||
"_journal/2024-05-19.md": "fddd90fae08fab9bd83b0ef5d362c93a",
|
||||
"_journal/2024-05/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c",
|
||||
"_journal/2024-05/2024-05-17.md": "fb880d68077b655ede36d994554f3aba"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-05-19"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Flashcards on x86-64 [[instructions#Unary Operations|unary operations]] and [[instructions#Binary Operations|binary operations]].
|
|
@ -10,4 +10,5 @@ title: "2024-05-17"
|
|||
|
||||
* Exploration of the law of [[pred-trans#Distributivity of Conjunction|Distributivity of Conjunction]].
|
||||
* Flashcards for left-child, right-sibling tree representations.
|
||||
* Distinguish [[set/index#Classes|classes]] and sets. Discuss Zermelo-Fraenkel and von Neumann-Bernays alternatives.
|
||||
* Distinguish [[set/index#Classes|classes]] and sets. Discuss Zermelo-Fraenkel and von Neumann-Bernays alternatives.
|
||||
* First play test for Hide and Seek. Decided to move forward with building the mobile apps.
|
|
@ -0,0 +1,12 @@
|
|||
---
|
||||
title: "2024-05-18"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Notes on direct-address tables.
|
||||
* Notes on the subset axioms and Russell's paradox.
|
|
@ -0,0 +1,94 @@
|
|||
---
|
||||
title: Direct Addressing
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: hashing::direct
|
||||
tags:
|
||||
- hashing
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Given a universe of keys $U = \{0, 1, \ldots, m - 1\}$, a **direct-address table** has $m$ **slots**. Each slot corresponds to a key in universe $U$.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
With respect to hashing, what does the "universe" of keys refer to?
|
||||
Back: Every potential key that may be inserted into the underlying dictionary.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716046153757-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given universe $U$, how many slots must a direct-address table have?
|
||||
Back: $|U|$
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716046153762-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to each position in a direct-address table?
|
||||
Back: A slot.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716046153766-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given a direct-address table, the element at slot $k$ has what key?
|
||||
Back: $k$.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716046153770-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given a direct-address table, an element with key $k$ is placed in what slot?
|
||||
Back: The $k$th slot.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716046153775-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Write pseudocode to test membership of $x$ in direct-address table `T[0:m-1]`.
|
||||
Back
|
||||
```c
|
||||
bool membership(T, x) {
|
||||
return T[x.key] != NIL;
|
||||
}
|
||||
```
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716046153781-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Write pseudocode to insert $x$ into direct-address table `T[0:m-1]`.
|
||||
Back
|
||||
```c
|
||||
void insert(T, x) {
|
||||
T[x.key] = x;
|
||||
}
|
||||
```
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716046153785-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Write pseudocode to delete $x$ from direct-address table `T[0:m-1]`.
|
||||
Back
|
||||
```c
|
||||
void delete(T, x) {
|
||||
T[x.key] = NIL;
|
||||
}
|
||||
```
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716046153789-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
@ -0,0 +1,5 @@
|
|||
---
|
||||
title: Hashing
|
||||
tags:
|
||||
- hash
|
||||
---
|
|
@ -260,7 +260,7 @@ Given any command $S$, $$wp(S, F) = F$$
|
|||
%%ANKI
|
||||
Basic
|
||||
Given command $S$, what does $wp(S, F)$ evaluate to?
|
||||
Back: The empty set.
|
||||
Back: $F$.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715806256907-->
|
||||
END%%
|
||||
|
|
|
@ -1,292 +0,0 @@
|
|||
---
|
||||
title: Axioms
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: set
|
||||
tags:
|
||||
- set
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Enderton describes ten different axioms in total which serve as the foundation of our set theory.
|
||||
|
||||
## Extensionality
|
||||
|
||||
If two sets have exactly the same members, then they are equal: $$\forall A, \forall B, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the extensionality axiom state?
|
||||
Back: If two sets have exactly the same members, then they are equal.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649069247-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the extensionality axiom expressed using first-order logic?
|
||||
Back: $$\forall A, \forall B, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734312-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following encodes which set theory axiom? $$\forall A, \forall B, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
|
||||
Back: The extensionality axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649069254-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many sets exist with no members?
|
||||
Back: Exactly one.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649069256-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory axiom proves uniqueness of $\varnothing$?
|
||||
Back: The extensionality axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649069259-->
|
||||
END%%
|
||||
|
||||
## Empty Set Axiom
|
||||
|
||||
There exists a set having no members: $$\exists B, \forall x, x \not\in B$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the empty set axiom state?
|
||||
Back: There exists a set having no members.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734322-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the empty set axiom expressed using first-order logic?
|
||||
Back: $$\exists B, \forall x, x \not\in B$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734327-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following encodes which set theory axiom? $$\exists B, \forall x, x \not\in B$$
|
||||
Back: The empty set axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734332-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory axiom proves existence of $\varnothing$?
|
||||
Back: The empty set axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649069259-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What two properties ensures definition $\varnothing$ is well-defined?
|
||||
Back: The empty set exists and is unique.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034312-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the empty set defined using set-builder notation?
|
||||
Back: $\{x \mid x \neq x\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715900348141-->
|
||||
END%%
|
||||
|
||||
## Pairing Axiom
|
||||
|
||||
For any sets $u$ and $v$, there exists a set having as members just $u$ and $v$: $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the pairing axiom state?
|
||||
Back: For any sets $u$ and $v$, there exists a set having as members just $u$ and $v$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734337-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the pairing axiom expressed using first-order logic?
|
||||
Back: $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734341-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following encodes which set theory axiom? $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$
|
||||
Back: The pairing axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734346-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory axiom proves existence of set $\{x, y\}$ where $x \neq y$?
|
||||
Back: The pairing axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734351-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory axiom proves existence of set $\{x\}$?
|
||||
Back: The pairing axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734357-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For sets $u$ and $v$, what name is given to set $\{u, v\}$?
|
||||
Back: The pair set of $u$ and $v$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034322-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In set theory, what does a singleton refer to?
|
||||
Back: A set with exactly one member.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034325-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What set theory axiom is used to prove existence of singletons?
|
||||
Back: The pairing axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034329-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the pair set $\{u, v\}$ defined using set-builder notation?
|
||||
Back: $\{x \mid x = u \lor x = v\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715900348148-->
|
||||
END%%
|
||||
|
||||
## Union Axiom
|
||||
|
||||
### Preliminary Form
|
||||
|
||||
For any sets $a$ and $b$, there exists a set whose members are those sets belonging either to $a$ or to $b$ (or both): $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the union axiom (preliminary form) state?
|
||||
Back: For any sets $a$ and $b$, there exists a set whose members are all in either $a$ or $b$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034333-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the union axiom (preliminary form) expressed using first-order logic?
|
||||
Back: $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034337-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following encodes which set theory axiom? $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$
|
||||
Back: The union axiom (preliminary form).
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034341-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the union of sets $a$ and $b$ denoted?
|
||||
Back: $a \cup b$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034346-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What two set theory axioms prove existence of e.g. $\{x_1, x_2, x_3\}$?
|
||||
Back: The pairing axiom and union axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034351-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the union of set $a$ and $b$ defined using set-builder notation?
|
||||
Back: $\{x \mid x \in a \lor x \in b\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715900348153-->
|
||||
END%%
|
||||
|
||||
## Power Set Axiom
|
||||
|
||||
For any set $a$, there is a set whose members are exactly the subsets of $a$: $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the power set axiom state?
|
||||
Back: For any set $a$, there exists a set whose members are exactly the subsets of $a$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034356-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the power set axiom expressed using first-order logic?
|
||||
Back: $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034361-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following encodes which set theory axiom? $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
|
||||
Back: The power set axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034368-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $x \subseteq a$ rewritten using first-order logic and $\in$?
|
||||
Back: $\forall t, t \in x \Rightarrow t \in a$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034375-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the power set of set $a$ denoted?
|
||||
Back: $\mathscr{P}{a}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034381-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the power set of set $a$ defined using set-builder notation?
|
||||
Back: $\{x \mid x \subseteq a\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715900348160-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
@ -0,0 +1,276 @@
|
|||
---
|
||||
title: Classes
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: set::class
|
||||
tags:
|
||||
- class
|
||||
- set
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
The **Zermelo-Fraenkel alternative** avoids speaking of collections defined using set theoretical notation that are not sets. The **von Neumann-Bernays** alternative calls these **classes**.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In set theory, what is a class?
|
||||
Back: A collection defined using set theoretical notation that isn't a set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576758-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which two alternatives are usually employed when speaking of classes?
|
||||
Back: The Zermelo-Fraenkel alternative and the von Neumann-Bernays alternative.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576761-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the Zermelo-Fraenkel alternative say about classes?
|
||||
Back: It gives it no ontological status at all.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576763-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the von Neumann-Bernays alternative say about classes?
|
||||
Back: It refers to objects defined using set theory but that aren't actually sets.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576765-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {1:Zermelo}-{2:Fraenkel} alternative is a separate approach from the {2:von Neumann}-{1:Bernays} alternative.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576766-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory alternative avoids the term "class"?
|
||||
Back: The Zermelo-Fraenkel alternative.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576768-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory alternative embraces the term "class"?
|
||||
Back: The von Neumann-Bernays alternative.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576769-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematical object is $\{x \mid x \neq x\}$?
|
||||
Back: A set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576771-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematical object is $\{x \mid x = x\}$?
|
||||
Back: A class.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576774-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Are sets or classes more general?
|
||||
Back: Classes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576777-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is every set a class?
|
||||
Back: Yes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576779-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is every class a set?
|
||||
Back: No.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576781-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assuming entrance requirement $\_\_\_$, what kind of mathematical object is $\{x \mid \_\_\_\}$?
|
||||
Back: A class.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576782-->
|
||||
END%%
|
||||
|
||||
## Russell's Paradox
|
||||
|
||||
Let $R = \{x \mid x \not\in x\}$. Then $R \in R \Leftrightarrow R \not\in R$.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What simpler set is $\{x \mid x \neq x\}$ equivalent to?
|
||||
Back: The empty set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576772-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $\{x \mid x \neq x\}$ a set?
|
||||
Back: Yes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074591194-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What simpler set is $\{x \mid x = x\}$ equivalent to?
|
||||
Back: N/A. This is a class.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576775-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $\{x \mid x = x\}$ a set?
|
||||
Back: No.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074591199-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What simpler set is $\{x \mid x \in x\}$ equivalent to?
|
||||
Back: The empty set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074591202-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $\{x \mid x \in x\}$ a set?
|
||||
Back: Yes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074610694-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What simpler set is $\{x \mid x \not\in x\}$ equivalent to?
|
||||
Back: N/A. This is a class.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074591205-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $\{x \mid x \not\in x\}$ a set?
|
||||
Back: No.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074610697-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $R = \{x \mid x \not\in x\}$. What biconditional demonstrates a paradox?
|
||||
Back: $R \in R \Leftrightarrow R \not\in R$
|
||||
Reference: “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
||||
<!--ID: 1716075743527-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given $R = \{x \mid x \not\in x\}$, what contradiction arises when we assume $R \in R$?
|
||||
Back: The entrance requirement says $R \not\in R$.
|
||||
Reference: “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
||||
<!--ID: 1716075811572-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given $R = \{x \mid x \not\in x\}$, what contradiction arises when we assume $R \not\in R$?
|
||||
Back: $R$ satisfies the entrance requirement meaning $R \in R$.
|
||||
Reference: “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
||||
<!--ID: 1716075811577-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What special name is given to class $\{x \mid x \not\in x\}$?
|
||||
Back: The Russell set.
|
||||
Reference: “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
||||
<!--ID: 1716075743531-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Explain how the Russell set is defined in plain English.
|
||||
Back: It is the "set" of all sets that do not contain themselves.
|
||||
Reference: “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
||||
<!--ID: 1716075743534-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the entrance requirement of the Russell set?
|
||||
Back: $x \not\in x$
|
||||
Reference: “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
||||
<!--ID: 1716075743537-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The barber paradox is a variant of what other paradox?
|
||||
Back: Russell's paradox.
|
||||
Reference: “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
||||
<!--ID: 1716075743540-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the barber paradox assume existence of?
|
||||
Back: A barber who shaves all those, and those only, who do not shave themselves.
|
||||
Reference: “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
||||
<!--ID: 1716075743544-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What question is posed within the barber paradox?
|
||||
Back: Does the barber shave himself?
|
||||
Reference: “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
||||
<!--ID: 1716075743547-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In the barber paradox, what contradiction arises when we assume the barber shaves himself?
|
||||
Back: The barber *only* shaves those who do not shave themselves.
|
||||
Reference: “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
||||
<!--ID: 1716075743551-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In the barber paradox, what contradiction arises when we assume the barber does not shave himself?
|
||||
Back: The barber shaves *all* men who do not shave themselves.
|
||||
Reference: “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
||||
<!--ID: 1716075743555-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
* “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
|
@ -134,130 +134,392 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1715786028667-->
|
||||
END%%
|
||||
|
||||
## Classes
|
||||
|
||||
The **Zermelo-Fraenkel alternative** avoids speaking of collections defined using set theoretical notation that are not sets. The **von Neumann-Bernays** alternative calls these **classes**.
|
||||
## Extensionality
|
||||
|
||||
If two sets have exactly the same members, then they are equal: $$\forall A, \forall B, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
|
||||
%%ANKI
|
||||
Basic
|
||||
In set theory, what is a class?
|
||||
Back: A collection defined using set theoretical notation that isn't a set.
|
||||
What does the extensionality axiom state?
|
||||
Back: If two sets have exactly the same members, then they are equal.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576758-->
|
||||
<!--ID: 1715649069247-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which two alternatives are usually employed when speaking of classes?
|
||||
Back: The Zermelo-Fraenkel alternative and the von Neumann-Bernays alternative.
|
||||
How is the extensionality axiom expressed using first-order logic?
|
||||
Back: $$\forall A, \forall B, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576761-->
|
||||
<!--ID: 1715649734312-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the Zermelo-Fraenkel alternative say about classes?
|
||||
Back: It gives it no ontological status at all.
|
||||
The following encodes which set theory axiom? $$\forall A, \forall B, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
|
||||
Back: The extensionality axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576763-->
|
||||
<!--ID: 1715649069254-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the von Neumann-Bernays alternative say about classes?
|
||||
Back: It refers to objects defined using set theory but that aren't actually sets.
|
||||
How many sets exist with no members?
|
||||
Back: Exactly one.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576765-->
|
||||
<!--ID: 1715649069256-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory axiom proves uniqueness of $\varnothing$?
|
||||
Back: The extensionality axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649069259-->
|
||||
END%%
|
||||
|
||||
## Empty Set Axiom
|
||||
|
||||
There exists a set having no members: $$\exists B, \forall x, x \not\in B$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the empty set axiom state?
|
||||
Back: There exists a set having no members.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734322-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the empty set axiom expressed using first-order logic?
|
||||
Back: $$\exists B, \forall x, x \not\in B$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734327-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following encodes which set theory axiom? $$\exists B, \forall x, x \not\in B$$
|
||||
Back: The empty set axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734332-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory axiom proves existence of $\varnothing$?
|
||||
Back: The empty set axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649069259-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What two properties ensures definition $\varnothing$ is well-defined?
|
||||
Back: The empty set exists and is unique.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034312-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the empty set defined using set-builder notation?
|
||||
Back: $\{x \mid x \neq x\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715900348141-->
|
||||
END%%
|
||||
|
||||
## Pairing Axiom
|
||||
|
||||
For any sets $u$ and $v$, there exists a set having as members just $u$ and $v$: $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the pairing axiom state?
|
||||
Back: For any sets $u$ and $v$, there exists a set having as members just $u$ and $v$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734337-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the pairing axiom expressed using first-order logic?
|
||||
Back: $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734341-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following encodes which set theory axiom? $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$
|
||||
Back: The pairing axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734346-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory axiom proves existence of set $\{x, y\}$ where $x \neq y$?
|
||||
Back: The pairing axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734351-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory axiom proves existence of set $\{x\}$?
|
||||
Back: The pairing axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715649734357-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
For sets $u$ and $v$, what name is given to set $\{u, v\}$?
|
||||
Back: The pair set of $u$ and $v$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034322-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In set theory, what does a singleton refer to?
|
||||
Back: A set with exactly one member.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034325-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What set theory axiom is used to prove existence of singletons?
|
||||
Back: The pairing axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034329-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the pair set $\{u, v\}$ defined using set-builder notation?
|
||||
Back: $\{x \mid x = u \lor x = v\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715900348148-->
|
||||
END%%
|
||||
|
||||
## Union Axiom
|
||||
|
||||
### Preliminary Form
|
||||
|
||||
For any sets $a$ and $b$, there exists a set whose members are those sets belonging either to $a$ or to $b$ (or both): $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the union axiom (preliminary form) state?
|
||||
Back: For any sets $a$ and $b$, there exists a set whose members are all in either $a$ or $b$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034333-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the union axiom (preliminary form) expressed using first-order logic?
|
||||
Back: $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034337-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following encodes which set theory axiom? $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$
|
||||
Back: The union axiom (preliminary form).
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034341-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the union of sets $a$ and $b$ denoted?
|
||||
Back: $a \cup b$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034346-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What two set theory axioms prove existence of e.g. $\{x_1, x_2, x_3\}$?
|
||||
Back: The pairing axiom and union axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034351-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the union of set $a$ and $b$ defined using set-builder notation?
|
||||
Back: $\{x \mid x \in a \lor x \in b\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715900348153-->
|
||||
END%%
|
||||
|
||||
## Power Set Axiom
|
||||
|
||||
For any set $a$, there is a set whose members are exactly the subsets of $a$: $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the power set axiom state?
|
||||
Back: For any set $a$, there exists a set whose members are exactly the subsets of $a$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034356-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the power set axiom expressed using first-order logic?
|
||||
Back: $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034361-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following encodes which set theory axiom? $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
|
||||
Back: The power set axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034368-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $x \subseteq a$ rewritten using first-order logic and $\in$?
|
||||
Back: $\forall t, t \in x \Rightarrow t \in a$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034375-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the power set of set $a$ denoted?
|
||||
Back: $\mathscr{P}{a}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715688034381-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the power set of set $a$ defined using set-builder notation?
|
||||
Back: $\{x \mid x \subseteq a\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715900348160-->
|
||||
END%%
|
||||
|
||||
## Subset Axioms
|
||||
|
||||
For each formula $\_\_\_$ not containing $B$, the following is an axiom: $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What do the subset axioms state?
|
||||
Back: For each formula $\phi$ not containing $B$, the following is an axiom: $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074312858-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $\_\_\_$ be a wff excluding $B$. How is its subset axiom stated in first-order logic?
|
||||
Back: $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074312864-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The following encodes which set theory axiom(s)? $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
|
||||
Back: The subset axioms.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074312869-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which axioms prove the existence of the union of two sets?
|
||||
Back: The union axiom.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074312873-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which axioms prove the existence of the intersection of two sets?
|
||||
Back: The subset axioms.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074312876-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the intersection of sets $A$ and $B$ denoted?
|
||||
Back: $A \cap B$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074312880-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the intersection of sets $a$ and $b$ defined using set-builder notation?
|
||||
Back: $\{x \mid x \in a \land x \in b\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074312884-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which axioms prove the existence of the relative complement of two sets?
|
||||
Back: The subset axioms.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074312888-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given sets $A$ and $B$, what does $A - B$ denote?
|
||||
Back: The relative complement of $B$ in $A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074312893-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the relative complement of set $B$ in $A$ denoted?
|
||||
Back: $A - B$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074312897-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the relative complement of set $b$ in $a$ defined using set-builder notation?
|
||||
Back: $\{x \mid x \in a \land x \not\in b\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716074312901-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {1:Zermelo}-{2:Fraenkel} alternative is a separate approach from the {2:von Neumann}-{1:Bernays} alternative.
|
||||
Union is to the {union axiom} whereas intersection is to the {subset axioms}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576766-->
|
||||
<!--ID: 1716074312905-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory alternative avoids the term "class"?
|
||||
Back: The Zermelo-Fraenkel alternative.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576768-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which set theory alternative embraces the term "class"?
|
||||
Back: The von Neumann-Bernays alternative.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576769-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematical object is $\{x \mid x \neq x\}$?
|
||||
Back: A set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576771-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to $\{x \mid x \neq x\}$?
|
||||
Back: The empty set.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576772-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What kind of mathematical object is $\{x \mid x = x\}$?
|
||||
Back: A class.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576774-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to $\{x \mid x = x\}$?
|
||||
Back: The class of all sets.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576775-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Are sets or classes more general?
|
||||
The subset axioms ensure we do not construct what kind of mathematical object?
|
||||
Back: Classes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576777-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is every set a class?
|
||||
Back: Yes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576779-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is every class a set?
|
||||
Back: No.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576781-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assuming entrance requirement $\_\_\_$, what kind of mathematical object is $\{x \mid \_\_\_\}$?
|
||||
Back: A class.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1715970576782-->
|
||||
<!--ID: 1716074312909-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
* “Russell’s Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
|
||||
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
@ -786,7 +786,7 @@ struct Node {
|
|||
struct Node *children[k];
|
||||
};
|
||||
```
|
||||
Back: A $k$-ary child representation.
|
||||
Back: A $k$-child representation.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
Tags: c17
|
||||
<!--ID: 1715969047054-->
|
||||
|
@ -845,7 +845,7 @@ END%%
|
|||
Basic
|
||||
The following is a portion of what kind of tree representation?
|
||||
![[binary-tree-nodes.png]]
|
||||
Back: A $k$-ary (binary) child representation.
|
||||
Back: A $k$-child (binary) representation.
|
||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1715969525820-->
|
||||
END%%
|
||||
|
|
|
@ -294,25 +294,16 @@ END%%
|
|||
|
||||
The MOV instruction class has four primary variants: `movb`, `movw`, `movl`, and `movq`. There also exist zero extension and sign extension variations in the forms of MOVS and MOVZ.
|
||||
|
||||
| Instruction | Operands | Effect | Description |
|
||||
| ----------- | -------- | ---------------- | ------------------------------------------- |
|
||||
| `movb` | S, D | D <- S | Move byte |
|
||||
| `movw` | S, D | D <- S | Move word |
|
||||
| `movl` | S, D | D <- S | Move double word |
|
||||
| `movq` | S, D | D <- S | Move quad word |
|
||||
| `movabsq` | I, R | R <- I | Move quad word |
|
||||
| `movzbw` | S, R | R <- ZE(S) | Move zero-extended byte to word |
|
||||
| `movzbl` | S, R | R <- ZE(S) | Move zero-extended byte to double word |
|
||||
| `movzwl` | S, R | R <- ZE(S) | Move zero-extended word to double word |
|
||||
| `movzbq` | S, R | R <- ZE(S) | Move zero-extended byte to quad word |
|
||||
| `movzwq` | S, R | R <- ZE(S) | Move zero-extended word to quad word |
|
||||
| `movsbw` | S, R | R <- SE(S) | Move sign-extended byte to word |
|
||||
| `movsbl` | S, R | R <- SE(S) | Move sign-extended byte to double word |
|
||||
| `movswl` | S, R | R <- SE(S) | Move sign-extended word to double word |
|
||||
| `movsbq` | S, R | R <- SE(S) | Move sign-extended byte to quad word |
|
||||
| `movswq` | S, R | R <- SE(S) | Move sign-extended word to quad word |
|
||||
| `movslq` | S, R | R <- SE(S) | Move sign-extended double word to quad word |
|
||||
| `cltq` | | %rax <- SE(%eax) | Sign-extend `%eax` to `%rax` |
|
||||
| Instruction | Operands | Effect | Description |
|
||||
| ------------ | -------- | ---------------- | ------------------------------------ |
|
||||
| `mov[bwlq]` | S, D | D <- S | Move byte/word/double word/quad word |
|
||||
| `movabsq` | I, R | R <- I | Move quad word |
|
||||
| `movzb[wlq]` | S, R | R <- ZE(S) | Move zero-extended byte |
|
||||
| `movzw[lq]` | S, R | R <- ZE(S) | Move zero-extended word |
|
||||
| `movsb[wlq]` | S, R | R <- SE(S) | Move sign-extended byte |
|
||||
| `movsw[lq]` | S, R | R <- SE(S) | Move sign-extended word |
|
||||
| `movslq` | S, R | R <- SE(S) | Move sign-extended double word |
|
||||
| `cltq` | | %rax <- SE(%eax) | Sign-extend `%eax` to `%rax` |
|
||||
|
||||
Notice there is no `movzlq` instruction. `movl` covers this functionality since, by convention, instructions moving double words into a 64-bit register automatically zeroes out the upper 32 bits.
|
||||
|
||||
|
@ -757,7 +748,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Besides effect memory computations, how else is `leaq` used?
|
||||
Besides effective memory computations, how else is `leaq` used?
|
||||
Back: For certain arithmetic operations.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1715780601469-->
|
||||
|
@ -765,7 +756,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assume `%rbx` holds $p$ and `%rdx` holds $q$. What is the value of `%rax` in the following?
|
||||
Assume `%rdx` holds $q$. What is the value of `%rax` in the following?
|
||||
```asm
|
||||
leaq 9(%rdx),%rax
|
||||
```
|
||||
|
@ -787,7 +778,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assume `%rbx` holds $p$ and `%rdx` holds $q$. What is the value of `%rax` in the following?
|
||||
Assume `%rbx` holds $p$. What is the value of `%rax` in the following?
|
||||
```asm
|
||||
leaq 2(%rbx, %rbx, 7),%rax
|
||||
```
|
||||
|
@ -798,7 +789,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assume `%rbx` holds $p$ and `%rdx` holds $q$. What is the value of `%rax` in the following?
|
||||
Assume `%rdx` holds $q$. What is the value of `%rax` in the following?
|
||||
```asm
|
||||
leaq 0xE(, %rdx, 3),%rax
|
||||
```
|
||||
|
@ -807,6 +798,277 @@ Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Program
|
|||
<!--ID: 1715781031941-->
|
||||
END%%
|
||||
|
||||
### Unary Operations
|
||||
|
||||
| Instruction | Operands | Effect | Description |
|
||||
| ----------- | -------- | ---------- | ------------ |
|
||||
| `inc[bwlq]` | D | D <- D + 1 | Increment |
|
||||
| `dec[bwlq]` | D | D <- D - 1 | Decrement |
|
||||
| `neg[bwlq]` | D | D <- -D | Negate |
|
||||
| `not[bwlq]` | D | D <- ~D | Complement |
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What four variants do `INC` instructions take on in x86-64?
|
||||
Back: `incb`, `incw`, `incl`, `incq`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716125986895-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which instruction class corresponds to effect $D \leftarrow D + 1$?
|
||||
Back: `INC`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127743477-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What combination of source and destination types is prohibited in unary instructions?
|
||||
Back: A source and destination memory address.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716125986904-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What do the instructions in the `INC` instruction class do?
|
||||
Back: Increments the specified destination by $1$.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716125986907-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {`INC`} instruction class is to x86-64 whereas the {`++`} operator is to C.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1716126147793-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What do the instructions in the `DEC` instruction class do?
|
||||
Back: Decrements the specified destination by $1$.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716125986910-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which instruction class corresponds to effect $D \leftarrow D - 1$?
|
||||
Back: `DEC`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127743483-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {`DEC`} instruction class is to x86-64 whereas the {`--`} operator is to C.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1716126147798-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What do the instructions in the `NEG` instruction class do?
|
||||
Back: Negates the specified destination.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716125986913-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which instruction class corresponds to effect $D \leftarrow -D$?
|
||||
Back: `NEG`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127743486-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {`NEG`} instruction class is to x86-64 whereas the {`-`} operator is to C.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1716126147801-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What do the instructions in the `NOT` instruction class do?
|
||||
Back: Complements the specified destination.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716125986916-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which instruction class corresponds to effect $D \leftarrow \textasciitilde D$?
|
||||
Back: `NOT`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127743488-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {`NOT`} instruction class is to x86-64 whereas the {`~`} operator is to C.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1716126147804-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distinguishes the `NEG` and `NOT` instruction classes?
|
||||
Back: The former negates, the latter complements.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716125986919-->
|
||||
END%%
|
||||
|
||||
### Binary Operations
|
||||
|
||||
| Instruction | Operands | Effect | Description |
|
||||
| ------------ | -------- | ----------- | -------------- |
|
||||
| `add[bwlq]` | S, D | D <- D + S | Addition |
|
||||
| `sub[bwlq]` | S, D | D <- D - S | Subtraction |
|
||||
| `imul[bwlq]` | S, D | D <- D * S | Multiplication |
|
||||
| `xor[bwlq]` | S, D | D <- D ^ S | Exclusive-or |
|
||||
| `or[bwlq]` | S, D | D <- D \| S | Or |
|
||||
| `and[bwlq]` | S, D | D <- D & S | And |
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What four variants do `ADD` instructions take on in x86-64?
|
||||
Back: `addb`, `addw`, `addl`, `addq`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127743491-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What combination of source and destination types is prohibited in `ADD` instructions?
|
||||
Back: A source and destination memory address.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127743494-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which instruction class corresponds to effect $D \leftarrow D + S$?
|
||||
Back: `ADD`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127743497-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {`ADD`} instruction class is to x86-64 as the {`+=`} operator is to C.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1716128138030-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which instruction class corresponds to effect $D \leftarrow D - S$?
|
||||
Back: `SUB`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127743500-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which `SUB` instruction is equivalent to `decq %rcx`?
|
||||
Back:
|
||||
```asm
|
||||
subq $1, %rcx
|
||||
```
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127853102-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How does Bryant et al. recommend reading `SUB` instructions?
|
||||
Back: As subtracting the first operand *from* the second.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127853106-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {`SUB`} instruction class is to x86-64 as the {`-=`} operator is to C.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1716128138033-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which instruction class corresponds to effect $D \leftarrow D * S$?
|
||||
Back: `IMUL`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127743502-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {`IMUL`} instruction class is to x86-64 as the {`*=`} operator is to C.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1716128138036-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which instruction class corresponds to effect $D \leftarrow D \;^\wedge\; S$?
|
||||
Back: `XOR`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127743505-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {`XOR`} instruction class is to x86-64 as the {`^=`} operator is to C.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1716128138040-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which instruction class corresponds to effect $D \leftarrow D \mid S$?
|
||||
Back: `OR`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127743508-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {`OR`} instruction class is to x86-64 as the {`|=`} operator is to C.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1716128138043-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which instruction class corresponds to effect $D \leftarrow D \;\&\; S$?
|
||||
Back: `AND`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1716127743511-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {`AND`} instruction class is to x86-64 as the {`&=`} operator is to C.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1716128138046-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
|
|
Loading…
Reference in New Issue