Notes on ordered pairs.
parent
9c39cc2b49
commit
cfa95d2390
|
@ -133,7 +133,8 @@
|
|||
"venn-diagram-union.png",
|
||||
"venn-diagram-intersection.png",
|
||||
"venn-diagram-rel-comp.png",
|
||||
"venn-diagram-abs-comp.png"
|
||||
"venn-diagram-abs-comp.png",
|
||||
"venn-diagram-symm-diff.png"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
|
@ -313,7 +314,7 @@
|
|||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||
"set/index.md": "55a80d53973af2c0343438346e2086b2",
|
||||
"set/index.md": "d1fcdfe4506aab4ec86f30118464fb2a",
|
||||
"set/graphs.md": "4bbcea8f5711b1ae26ed0026a4a69800",
|
||||
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
||||
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
||||
|
@ -332,7 +333,7 @@
|
|||
"_journal/2024-03-22.md": "8da8cda07d3de74f7130981a05dce254",
|
||||
"_journal/2024-03/2024-03-21.md": "cd465f71800b080afa5c6bdc75bf9cd3",
|
||||
"x86-64/declarations.md": "75bc7857cf2207a40cd7f0ee056af2f2",
|
||||
"x86-64/instructions.md": "c9ae5dedaa22fbcdc486663877fc1c1e",
|
||||
"x86-64/instructions.md": "06b7fbe1a7a9568b80239310eb72e87a",
|
||||
"git/refs.md": "e20c2c9b14ba6c2bd235416017c5c474",
|
||||
"set/trees.md": "b085bd8d08dccd8cbf02bb1b7a4baa43",
|
||||
"_journal/2024-03-24.md": "1974cdb9fc42c3a8bebb8ac76d4b1fd6",
|
||||
|
@ -466,7 +467,7 @@
|
|||
"programming/λ-Calculus.md": "bf36bdaf85abffd171bb2087fb8228b2",
|
||||
"_journal/2024-05-23.md": "9d9106a68197adcee42cd19c69d2f840",
|
||||
"_journal/2024-05/2024-05-22.md": "3c29eec25f640183b0be365e7a023750",
|
||||
"programming/lambda-calculus.md": "547bc98111e516fc70a415d91db7b3ff",
|
||||
"programming/lambda-calculus.md": "89f024561ea770552bc20056a45dbce6",
|
||||
"_journal/2024-05-25.md": "04e8e1cf4bfdbfb286effed40b09c900",
|
||||
"_journal/2024-05/2024-05-24.md": "86132f18c7a27ebc7a3e4a07f4867858",
|
||||
"_journal/2024-05/2024-05-23.md": "d0c98b484b1def3a9fd7262dcf2050ad",
|
||||
|
@ -474,8 +475,8 @@
|
|||
"_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869",
|
||||
"_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae",
|
||||
"_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95",
|
||||
"algebra/set.md": "049c5ff36ce8fe99b2c8a8f452d0514f",
|
||||
"algebra/boolean.md": "56d2e0be2853d49b5dface7fa2d785a9",
|
||||
"algebra/set.md": "92de8c0197cef54b5c6c269aac6b93b2",
|
||||
"algebra/boolean.md": "ee41e624f4d3d3aca00020d9a9ae42c8",
|
||||
"git/merge-conflicts.md": "af3603c7a8fde60a1982c0950d209b77",
|
||||
"_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337",
|
||||
"_journal/2024-05/2024-05-27.md": "e498d5154558ebcf7261302403ea8016",
|
||||
|
@ -489,10 +490,17 @@
|
|||
"_journal/2024-05/2024-05-31.md": "4421312bffa6f3c7e501a28be1e3bd5b",
|
||||
"_journal/2024-06-02.md": "0059e0332794e0007545b92bc4c1ff9f",
|
||||
"_journal/2024-06/2024-06-01.md": "6d39286db9d89975e441c57f6a92cfaf",
|
||||
"_journal/2024-06-03.md": "560019592d88237bdb4b0ea609465ef6",
|
||||
"_journal/2024-06-03.md": "3dbe96317f721515f3e6a20b82e3d537",
|
||||
"_journal/2024-06/2024-06-02.md": "0059e0332794e0007545b92bc4c1ff9f",
|
||||
"programming/lean.md": "2815eac192c7e231937e2369817a6dc1",
|
||||
"logic/equality.md": "1867b676e0e7c9ec8f1addc40fefb966"
|
||||
"logic/equality.md": "1867b676e0e7c9ec8f1addc40fefb966",
|
||||
"_journal/2024-06-04.md": "a7ca58741dbfdd7e351d835db3884c68",
|
||||
"_journal/2024-06/2024-06-03.md": "3dbe96317f721515f3e6a20b82e3d537",
|
||||
"_journal/2024-06-05.md": "60f82c089f6911db8541a0bca7505ab4",
|
||||
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
|
||||
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
|
||||
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
|
||||
"set/relations.md": "411e81682aa5a731cd501031dc3ab59d"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-06-06"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Notes on [[relations#Overview|ordered pairs]].
|
|
@ -0,0 +1,12 @@
|
|||
---
|
||||
title: "2024-06-04"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Notes on [[set#Symmetric Difference|symmetric differences]] of sets.
|
||||
* Finished Chapter 2 exercises in "Elements of Set Theory".
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-06-05"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Read chapter 18.10.2 and 15.4 in "Database System Concepts".
|
|
@ -180,22 +180,55 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What C bit-level operator corresponds to $\cup$?
|
||||
What C bit-level operator corresponds to set notation $\cup$?
|
||||
Back: `|`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary c17 set
|
||||
<!--ID: 1707774068186-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{$\cup$} is to the algebra of sets whereas {$\lor$} is to boolean algebra.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
Tags: set
|
||||
<!--ID: 1717554445676-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What C bit-level operator corresponds to $\cap$?
|
||||
What C bit-level operator corresponds to set notation $\cap$?
|
||||
Back: `&`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary c17 set
|
||||
<!--ID: 1707774068192-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{$\cap$} is to the algebra of sets whereas {$\land$} is to boolean algebra.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
Tags: set
|
||||
<!--ID: 1717554445682-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What C bit-level operator corresponds to set notation $\triangle$?
|
||||
Back: `^`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary c17 set
|
||||
<!--ID: 1717554445689-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{$\triangle$} is to the algebra of sets whereas {$\oplus$} is to boolean algebra.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
Tags: set
|
||||
<!--ID: 1717554445695-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is a bit mask?
|
||||
|
|
|
@ -520,6 +520,34 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1717073537007-->
|
||||
END%%
|
||||
|
||||
## Symmetric Difference
|
||||
|
||||
Define the **symmetric difference** of sets $A$ and $B$ as $$A \mathop{\triangle} B = (A - B) \cup (B - A)$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What two operators are used in the definition of the symmetric difference?
|
||||
Back: $\cup$ and $-$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717554445662-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the symmetric difference of sets $A$ and $B$ denoted?
|
||||
Back: $A \mathop{\triangle} B$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717554445665-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $A \mathop{\triangle} B$ defined?
|
||||
Back: As $(A - B) \cup (B - A)$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717554445670-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
@ -16,6 +16,14 @@ Assume that there is given an infinite sequence of expressions called **variable
|
|||
|
||||
If the sequence of atomic constants is empty, the system is called **pure**. Otherwise it is called **applied**.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Who is usually attributed the creation of $\lambda$-calculus?
|
||||
Back: Alonzo Church.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1717450542692-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does a "higher-order function" refer to?
|
||||
|
@ -769,6 +777,84 @@ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combi
|
|||
<!--ID: 1717036717102-->
|
||||
END%%
|
||||
|
||||
For all $\lambda$-terms $M$, $N$, and variables $x$:
|
||||
|
||||
* $[x/x]M \equiv M$
|
||||
* $x \not\in FV(M) \Rightarrow [N/x]M \equiv M$
|
||||
* $x \in FV(M) \Rightarrow FV([N/x]M) = FV(N) \cup (FV(M) - \{x\})$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the result of $[x/x]M$?
|
||||
Back: $M$.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1717439837468-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $x \not\in FV(M)$, what is the result of $[N/x]M$?
|
||||
Back: $M$
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1717439837499-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $x \in FV(M)$. How is $FV([N/x]M)$ equivalently written without substitution?
|
||||
Back: $FV(N) \cup (FV(M) - \{x\})$
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1717449967215-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $x \in FV(M)$. How is $FV(N) \cup (FV(M) - \{x\})$ more simply written using substitution?
|
||||
Back: $FV([N/x]M)$
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1717449967220-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the result of $lgh([y/x]M)$?
|
||||
Back: $lgh(M)$
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1717439837513-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
$[N/x]M$ corresponds to which equivalence-transformation inference rule?
|
||||
Back: Substitution.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1717449830572-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
$[P/v][v/x]M \equiv [P/x]M$ corresponds to which equivalence-transformation inference rule?
|
||||
Back: Transitivity.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1717449830601-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Rewrite $(E_u^x)_v^x$ using $\lambda$-calculus syntax.
|
||||
Back: $[v/x][u/x]E$
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1717449830608-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Rewrite $[x/v][v/x]M$ using equivalence-transformation syntax.
|
||||
Back: $(M^x_v)^v_x$
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1717449830614-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
@ -468,7 +468,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What advantage does the general form of the union axiom have over its prelimiary form?
|
||||
What advantage does the general form of the union axiom have over its preliminary form?
|
||||
Back: The general form can handle infinite sets.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007851-->
|
||||
|
@ -746,7 +746,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the result of $\bigcap \{\{2, 4, 6\}, \{6, 16, 26\}, \{0\}\}$?
|
||||
What is the result of $\bigcap \{\{2, 4, 6\}, \{6, 16, 26\}, \{6\}\}$?
|
||||
Back: $\{6\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007870-->
|
||||
|
@ -809,6 +809,15 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1716395245875-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What set operation is shaded green in the following venn diagram?
|
||||
![[venn-diagram-symm-diff.png]]
|
||||
Back: $A \mathop{\triangle} B$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717554445655-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The "subset axioms" are more accurately classified as what?
|
||||
|
|
|
@ -0,0 +1,149 @@
|
|||
---
|
||||
title: Relations
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: set::relation
|
||||
tags:
|
||||
- relation
|
||||
- set
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
An ordered pair of $x$ and $y$, denoted $\langle x, y \rangle$, is defined as: $\langle x, y \rangle = \{\{x\}, \{x, y\}\}$. We define the **first coordinate** of $\langle x, y \rangle$ to be $x$ and the **second coordinate** to be $y$.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is an ordered pair of $x$ and $y$ denoted?
|
||||
Back: $\langle x, y \rangle$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717678753102-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What property must any satisfactory definition of $\langle x, y \rangle$ satisfy?
|
||||
Back: $x$ and $y$, along with their order, are uniquely determined.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717679524930-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of ordered pairs or sets is more general?
|
||||
Back: Sets.
|
||||
<!--ID: 1717678753108-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What biconditional is used to prove the well-definedness of $\langle x, y \rangle$?
|
||||
Back: $(\langle x, y \rangle = \langle u, v \rangle) \Leftrightarrow (x = u \land y = v)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717678753111-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{$\{1, 2\}$} is a set whereas {$\langle 1, 2 \rangle$} is an ordered pair.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717678753116-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $\langle x, y \rangle$ usually defined?
|
||||
Back: As $\{\{x\}, \{x, y\}\}$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717678753120-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Who is usually attributed the most commonly used definition of an ordered pair?
|
||||
Back: Kazimierz Kuratowski.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717678753124-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $\{\{x\}, \{x, y\}\}$ alternatively denoted?
|
||||
Back: $\langle x, y \rangle$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717678753129-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Well-definedness of ordered pairs: {$\langle u, v \rangle = \langle x, y \rangle$} if and only if {$u = x \land v = y$}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717678753134-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What term is used to refer to $x$ in $\langle x, y \rangle$?
|
||||
Back: The first coordinate.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717678753139-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
$y$ is the {second} coordinate of $\langle x, y \rangle$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717678753145-->
|
||||
END%%
|
||||
|
||||
Given two sets $A$ and $B$, the **Cartesian product** $A \times B$ is defined as: $$A \times B = \{\langle x, y \rangle \mid x \in A \land y \in B\}$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the Cartesian product of $A$ and $B$ denoted?
|
||||
Back: $A \times B$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717679397781-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Using ordered pairs, how is $A \times B$ defined?
|
||||
Back: $\{\langle x, y \rangle \mid x \in A \land y \in B\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717679397797-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Who is attributed the representation of points in a plane?
|
||||
Back: René Descartes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717679397825-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why is the Cartesian product named the way it is?
|
||||
Back: It is named after René Descartes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717679397836-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $x, y \in A$. What set is $\langle x, y \rangle$ in?
|
||||
Back: $\mathscr{P}\mathscr{P}A$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717679397848-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{$x \in A$} iff {$\{x\} \subseteq A$} iff {$\{x\} \in \mathscr{P}A$}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1717679397860-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
@ -82,14 +82,6 @@ There are three types of operands:
|
|||
| Memory | $(r_b,r_i,s)$ | $M[R[r_b] + R[r_i] \cdot s]$ | Scaled indexed |
|
||||
| Memory | $Imm(r_b,r_i,s)$ | $M[Imm + R[r_b] + R[r_i] \cdot s]$ | Scaled indexed |
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the three types of operands instructions can act on?
|
||||
Back: Immediates, registers, and memory addresses.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1713212889877-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What are the types of source operands instructions can specify?
|
||||
|
|
Loading…
Reference in New Issue