Notes on ordered pairs.

c-declarations
Joshua Potter 2024-06-06 07:14:13 -06:00
parent 9c39cc2b49
commit cfa95d2390
11 changed files with 359 additions and 20 deletions

View File

@ -133,7 +133,8 @@
"venn-diagram-union.png",
"venn-diagram-intersection.png",
"venn-diagram-rel-comp.png",
"venn-diagram-abs-comp.png"
"venn-diagram-abs-comp.png",
"venn-diagram-symm-diff.png"
],
"File Hashes": {
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
@ -313,7 +314,7 @@
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
"set/index.md": "55a80d53973af2c0343438346e2086b2",
"set/index.md": "d1fcdfe4506aab4ec86f30118464fb2a",
"set/graphs.md": "4bbcea8f5711b1ae26ed0026a4a69800",
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
@ -332,7 +333,7 @@
"_journal/2024-03-22.md": "8da8cda07d3de74f7130981a05dce254",
"_journal/2024-03/2024-03-21.md": "cd465f71800b080afa5c6bdc75bf9cd3",
"x86-64/declarations.md": "75bc7857cf2207a40cd7f0ee056af2f2",
"x86-64/instructions.md": "c9ae5dedaa22fbcdc486663877fc1c1e",
"x86-64/instructions.md": "06b7fbe1a7a9568b80239310eb72e87a",
"git/refs.md": "e20c2c9b14ba6c2bd235416017c5c474",
"set/trees.md": "b085bd8d08dccd8cbf02bb1b7a4baa43",
"_journal/2024-03-24.md": "1974cdb9fc42c3a8bebb8ac76d4b1fd6",
@ -466,7 +467,7 @@
"programming/λ-Calculus.md": "bf36bdaf85abffd171bb2087fb8228b2",
"_journal/2024-05-23.md": "9d9106a68197adcee42cd19c69d2f840",
"_journal/2024-05/2024-05-22.md": "3c29eec25f640183b0be365e7a023750",
"programming/lambda-calculus.md": "547bc98111e516fc70a415d91db7b3ff",
"programming/lambda-calculus.md": "89f024561ea770552bc20056a45dbce6",
"_journal/2024-05-25.md": "04e8e1cf4bfdbfb286effed40b09c900",
"_journal/2024-05/2024-05-24.md": "86132f18c7a27ebc7a3e4a07f4867858",
"_journal/2024-05/2024-05-23.md": "d0c98b484b1def3a9fd7262dcf2050ad",
@ -474,8 +475,8 @@
"_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869",
"_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae",
"_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95",
"algebra/set.md": "049c5ff36ce8fe99b2c8a8f452d0514f",
"algebra/boolean.md": "56d2e0be2853d49b5dface7fa2d785a9",
"algebra/set.md": "92de8c0197cef54b5c6c269aac6b93b2",
"algebra/boolean.md": "ee41e624f4d3d3aca00020d9a9ae42c8",
"git/merge-conflicts.md": "af3603c7a8fde60a1982c0950d209b77",
"_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337",
"_journal/2024-05/2024-05-27.md": "e498d5154558ebcf7261302403ea8016",
@ -489,10 +490,17 @@
"_journal/2024-05/2024-05-31.md": "4421312bffa6f3c7e501a28be1e3bd5b",
"_journal/2024-06-02.md": "0059e0332794e0007545b92bc4c1ff9f",
"_journal/2024-06/2024-06-01.md": "6d39286db9d89975e441c57f6a92cfaf",
"_journal/2024-06-03.md": "560019592d88237bdb4b0ea609465ef6",
"_journal/2024-06-03.md": "3dbe96317f721515f3e6a20b82e3d537",
"_journal/2024-06/2024-06-02.md": "0059e0332794e0007545b92bc4c1ff9f",
"programming/lean.md": "2815eac192c7e231937e2369817a6dc1",
"logic/equality.md": "1867b676e0e7c9ec8f1addc40fefb966"
"logic/equality.md": "1867b676e0e7c9ec8f1addc40fefb966",
"_journal/2024-06-04.md": "a7ca58741dbfdd7e351d835db3884c68",
"_journal/2024-06/2024-06-03.md": "3dbe96317f721515f3e6a20b82e3d537",
"_journal/2024-06-05.md": "60f82c089f6911db8541a0bca7505ab4",
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
"set/relations.md": "411e81682aa5a731cd501031dc3ab59d"
},
"fields_dict": {
"Basic": [

View File

@ -0,0 +1,11 @@
---
title: "2024-06-06"
---
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Notes on [[relations#Overview|ordered pairs]].

View File

@ -0,0 +1,12 @@
---
title: "2024-06-04"
---
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Notes on [[set#Symmetric Difference|symmetric differences]] of sets.
* Finished Chapter 2 exercises in "Elements of Set Theory".

View File

@ -0,0 +1,11 @@
---
title: "2024-06-05"
---
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Read chapter 18.10.2 and 15.4 in "Database System Concepts".

View File

@ -180,22 +180,55 @@ END%%
%%ANKI
Basic
What C bit-level operator corresponds to $\cup$?
What C bit-level operator corresponds to set notation $\cup$?
Back: `|`
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Tags: binary c17 set
<!--ID: 1707774068186-->
END%%
%%ANKI
Cloze
{$\cup$} is to the algebra of sets whereas {$\lor$} is to boolean algebra.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Tags: set
<!--ID: 1717554445676-->
END%%
%%ANKI
Basic
What C bit-level operator corresponds to $\cap$?
What C bit-level operator corresponds to set notation $\cap$?
Back: `&`
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Tags: binary c17 set
<!--ID: 1707774068192-->
END%%
%%ANKI
Cloze
{$\cap$} is to the algebra of sets whereas {$\land$} is to boolean algebra.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Tags: set
<!--ID: 1717554445682-->
END%%
%%ANKI
Basic
What C bit-level operator corresponds to set notation $\triangle$?
Back: `^`
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Tags: binary c17 set
<!--ID: 1717554445689-->
END%%
%%ANKI
Cloze
{$\triangle$} is to the algebra of sets whereas {$\oplus$} is to boolean algebra.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Tags: set
<!--ID: 1717554445695-->
END%%
%%ANKI
Basic
What is a bit mask?

View File

@ -520,6 +520,34 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1717073537007-->
END%%
## Symmetric Difference
Define the **symmetric difference** of sets $A$ and $B$ as $$A \mathop{\triangle} B = (A - B) \cup (B - A)$$
%%ANKI
Basic
What two operators are used in the definition of the symmetric difference?
Back: $\cup$ and $-$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717554445662-->
END%%
%%ANKI
Basic
How is the symmetric difference of sets $A$ and $B$ denoted?
Back: $A \mathop{\triangle} B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717554445665-->
END%%
%%ANKI
Basic
How is $A \mathop{\triangle} B$ defined?
Back: As $(A - B) \cup (B - A)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717554445670-->
END%%
## Bibliography
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).

View File

@ -16,6 +16,14 @@ Assume that there is given an infinite sequence of expressions called **variable
If the sequence of atomic constants is empty, the system is called **pure**. Otherwise it is called **applied**.
%%ANKI
Basic
Who is usually attributed the creation of $\lambda$-calculus?
Back: Alonzo Church.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717450542692-->
END%%
%%ANKI
Basic
What does a "higher-order function" refer to?
@ -769,6 +777,84 @@ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combi
<!--ID: 1717036717102-->
END%%
For all $\lambda$-terms $M$, $N$, and variables $x$:
* $[x/x]M \equiv M$
* $x \not\in FV(M) \Rightarrow [N/x]M \equiv M$
* $x \in FV(M) \Rightarrow FV([N/x]M) = FV(N) \cup (FV(M) - \{x\})$
%%ANKI
Basic
What is the result of $[x/x]M$?
Back: $M$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717439837468-->
END%%
%%ANKI
Basic
If $x \not\in FV(M)$, what is the result of $[N/x]M$?
Back: $M$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717439837499-->
END%%
%%ANKI
Basic
Suppose $x \in FV(M)$. How is $FV([N/x]M)$ equivalently written without substitution?
Back: $FV(N) \cup (FV(M) - \{x\})$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717449967215-->
END%%
%%ANKI
Basic
Suppose $x \in FV(M)$. How is $FV(N) \cup (FV(M) - \{x\})$ more simply written using substitution?
Back: $FV([N/x]M)$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717449967220-->
END%%
%%ANKI
Basic
What is the result of $lgh([y/x]M)$?
Back: $lgh(M)$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717439837513-->
END%%
%%ANKI
Basic
$[N/x]M$ corresponds to which equivalence-transformation inference rule?
Back: Substitution.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717449830572-->
END%%
%%ANKI
Basic
$[P/v][v/x]M \equiv [P/x]M$ corresponds to which equivalence-transformation inference rule?
Back: Transitivity.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717449830601-->
END%%
%%ANKI
Basic
Rewrite $(E_u^x)_v^x$ using $\lambda$-calculus syntax.
Back: $[v/x][u/x]E$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717449830608-->
END%%
%%ANKI
Basic
Rewrite $[x/v][v/x]M$ using equivalence-transformation syntax.
Back: $(M^x_v)^v_x$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717449830614-->
END%%
## Bibliography
* Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).

View File

@ -468,7 +468,7 @@ END%%
%%ANKI
Basic
What advantage does the general form of the union axiom have over its prelimiary form?
What advantage does the general form of the union axiom have over its preliminary form?
Back: The general form can handle infinite sets.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007851-->
@ -746,7 +746,7 @@ END%%
%%ANKI
Basic
What is the result of $\bigcap \{\{2, 4, 6\}, \{6, 16, 26\}, \{0\}\}$?
What is the result of $\bigcap \{\{2, 4, 6\}, \{6, 16, 26\}, \{6\}\}$?
Back: $\{6\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007870-->
@ -809,6 +809,15 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1716395245875-->
END%%
%%ANKI
Basic
What set operation is shaded green in the following venn diagram?
![[venn-diagram-symm-diff.png]]
Back: $A \mathop{\triangle} B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717554445655-->
END%%
%%ANKI
Basic
The "subset axioms" are more accurately classified as what?

149
notes/set/relations.md Normal file
View File

@ -0,0 +1,149 @@
---
title: Relations
TARGET DECK: Obsidian::STEM
FILE TAGS: set::relation
tags:
- relation
- set
---
## Overview
An ordered pair of $x$ and $y$, denoted $\langle x, y \rangle$, is defined as: $\langle x, y \rangle = \{\{x\}, \{x, y\}\}$. We define the **first coordinate** of $\langle x, y \rangle$ to be $x$ and the **second coordinate** to be $y$.
%%ANKI
Basic
How is an ordered pair of $x$ and $y$ denoted?
Back: $\langle x, y \rangle$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753102-->
END%%
%%ANKI
Basic
What property must any satisfactory definition of $\langle x, y \rangle$ satisfy?
Back: $x$ and $y$, along with their order, are uniquely determined.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679524930-->
END%%
%%ANKI
Basic
Which of ordered pairs or sets is more general?
Back: Sets.
<!--ID: 1717678753108-->
END%%
%%ANKI
Basic
What biconditional is used to prove the well-definedness of $\langle x, y \rangle$?
Back: $(\langle x, y \rangle = \langle u, v \rangle) \Leftrightarrow (x = u \land y = v)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753111-->
END%%
%%ANKI
Cloze
{$\{1, 2\}$} is a set whereas {$\langle 1, 2 \rangle$} is an ordered pair.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753116-->
END%%
%%ANKI
Basic
How is $\langle x, y \rangle$ usually defined?
Back: As $\{\{x\}, \{x, y\}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753120-->
END%%
%%ANKI
Basic
Who is usually attributed the most commonly used definition of an ordered pair?
Back: Kazimierz Kuratowski.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753124-->
END%%
%%ANKI
Basic
How is $\{\{x\}, \{x, y\}\}$ alternatively denoted?
Back: $\langle x, y \rangle$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753129-->
END%%
%%ANKI
Cloze
Well-definedness of ordered pairs: {$\langle u, v \rangle = \langle x, y \rangle$} if and only if {$u = x \land v = y$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753134-->
END%%
%%ANKI
Basic
What term is used to refer to $x$ in $\langle x, y \rangle$?
Back: The first coordinate.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753139-->
END%%
%%ANKI
Cloze
$y$ is the {second} coordinate of $\langle x, y \rangle$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753145-->
END%%
Given two sets $A$ and $B$, the **Cartesian product** $A \times B$ is defined as: $$A \times B = \{\langle x, y \rangle \mid x \in A \land y \in B\}$$
%%ANKI
Basic
How is the Cartesian product of $A$ and $B$ denoted?
Back: $A \times B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397781-->
END%%
%%ANKI
Basic
Using ordered pairs, how is $A \times B$ defined?
Back: $\{\langle x, y \rangle \mid x \in A \land y \in B\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397797-->
END%%
%%ANKI
Basic
Who is attributed the representation of points in a plane?
Back: René Descartes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397825-->
END%%
%%ANKI
Basic
Why is the Cartesian product named the way it is?
Back: It is named after René Descartes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397836-->
END%%
%%ANKI
Basic
Suppose $x, y \in A$. What set is $\langle x, y \rangle$ in?
Back: $\mathscr{P}\mathscr{P}A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397848-->
END%%
%%ANKI
Cloze
{$x \in A$} iff {$\{x\} \subseteq A$} iff {$\{x\} \in \mathscr{P}A$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397860-->
END%%
## Bibliography
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).

View File

@ -82,14 +82,6 @@ There are three types of operands:
| Memory | $(r_b,r_i,s)$ | $M[R[r_b] + R[r_i] \cdot s]$ | Scaled indexed |
| Memory | $Imm(r_b,r_i,s)$ | $M[Imm + R[r_b] + R[r_i] \cdot s]$ | Scaled indexed |
%%ANKI
Basic
What are the three types of operands instructions can act on?
Back: Immediates, registers, and memory addresses.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1713212889877-->
END%%
%%ANKI
Basic
What are the types of source operands instructions can specify?