Unions/intersections and distributivity of disjunction.
parent
d2755cd89a
commit
2c08d82101
|
@ -309,7 +309,7 @@
|
|||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||
"set/index.md": "b8165da42a81b5dc01b0a44ce365804e",
|
||||
"set/index.md": "83f21533067c58ada1222a1c53ebbe8a",
|
||||
"set/graphs.md": "4bbcea8f5711b1ae26ed0026a4a69800",
|
||||
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
||||
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
||||
|
@ -432,7 +432,7 @@
|
|||
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
||||
"git/remotes.md": "2208e34b3195b6f1ec041024a66fb38b",
|
||||
"programming/pred-trans.md": "fe30f0cab01fd31640f0778bf983747f",
|
||||
"programming/pred-trans.md": "db73cc035e92cd019e7e6f79921e6c1e",
|
||||
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
||||
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||
"_journal/2024-05/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||
|
@ -446,15 +446,15 @@
|
|||
"_journal/2024-05-17.md": "fb880d68077b655ede36d994554f3aba",
|
||||
"_journal/2024-05/2024-05-16.md": "9fdfadc3f9ea6a4418fd0e7066d6b10c",
|
||||
"_journal/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c",
|
||||
"hashing/direct-addressing.md": "17daf22ed3dfcc465924a175e8f11ce3",
|
||||
"hashing/index.md": "340f8583eb51eaef011e3302bddb7ff8",
|
||||
"set/classes.md": "3600fde1c4b30f600862d8d640962e4f",
|
||||
"hashing/direct-addressing.md": "7ffaa27c01130d21aa32cf3b1c407785",
|
||||
"hashing/index.md": "c870cf66e0224db58315ac0ba43b9cb1",
|
||||
"set/classes.md": "bd3821b98c0893e1e13c06ff4def81ca",
|
||||
"_journal/2024-05-19.md": "fddd90fae08fab9bd83b0ef5d362c93a",
|
||||
"_journal/2024-05/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c",
|
||||
"_journal/2024-05/2024-05-17.md": "fb880d68077b655ede36d994554f3aba",
|
||||
"_journal/2024-05-20.md": "d58a4ecd3bf9621cbe688f043be61239",
|
||||
"_journal/2024-05/2024-05-19.md": "fc14fc23d4ddca3628df7eec71a07e27",
|
||||
"_journal/2024-05-21.md": "4753ad41a519241d1ab7610bfe3c4038",
|
||||
"_journal/2024-05-21.md": "7028d18a55f0a1f65dc0753af431ca42",
|
||||
"_journal/2024-05/2024-05-20.md": "d58a4ecd3bf9621cbe688f043be61239"
|
||||
},
|
||||
"fields_dict": {
|
||||
|
|
|
@ -8,6 +8,7 @@ title: "2024-05-21"
|
|||
- [ ] Go (1 Life & Death Problem)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* TODO: Hash tables
|
||||
* TODO: Arbitrary unions and intersections
|
||||
* TODO: Distributitivity of Disjunction
|
||||
* High-level notes/flashcards on [[hashing/index|hash tables]].
|
||||
* Flashcards on arbitrary unions and intersections.
|
||||
* Notes on [[pred-trans#Distributivity of Disjunction|Distributivity of Disjunction]].
|
||||
* Watched [Lecture #09 - Concurrent Indexes](https://www.youtube.com/watch?v=5KClozM1jjw) on databases.
|
|
@ -10,14 +10,6 @@ tags:
|
|||
|
||||
Given a universe of keys $U = \{0, 1, \ldots, m - 1\}$, a **direct-address table** has $m$ **slots**. Each slot corresponds to a key in universe $U$.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
With respect to hashing, what does the "universe" of keys refer to?
|
||||
Back: Every potential key that may be inserted into the underlying dictionary.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716046153757-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given universe $U$, how many slots must a direct-address table have?
|
||||
|
@ -63,6 +55,14 @@ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (
|
|||
<!--ID: 1716046153781-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the worst-cast runtime complexity of direct-address table searches?
|
||||
Back: $O(1)$
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180982-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Write pseudocode to insert $x$ into direct-address table `T[0:m-1]`.
|
||||
|
@ -76,6 +76,14 @@ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (
|
|||
<!--ID: 1716046153785-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the worst-case runtime complexity of direct-address table insertions?
|
||||
Back: $O(1)$
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180983-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Write pseudocode to delete $x$ from direct-address table `T[0:m-1]`.
|
||||
|
@ -89,6 +97,30 @@ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (
|
|||
<!--ID: 1716046153789-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the worst-cast runtime complexity of direct-address table deletions?
|
||||
Back: $O(1)$
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180984-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In what situation does direct addressing waste space?
|
||||
Back: When the number of keys used is much less than the size of the universe.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180986-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In what situation is direct addressing impossible?
|
||||
Back: When the size of the universe is too large to hold in memory.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180987-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
@ -1,5 +1,142 @@
|
|||
---
|
||||
title: Hashing
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: hashing
|
||||
tags:
|
||||
- hash
|
||||
- hashing
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
A **hash table** `T[0:m-1]` uses a **hash function** to map a universe of keys into slots of the hash table. It can be seen as a generalization of direct addressing (which has "hash function" $h(k) = k$).
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
With respect to hashing, what does the "universe" of keys refer to?
|
||||
Back: Every potential key that may be inserted into the underlying dictionary.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716046153757-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What name is given to each position in a hash table?
|
||||
Back: A slot.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180959-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given a hash table with hash function $h$, the element at slot $k$ has what key?
|
||||
Back: A key $k'$ such that $h(k') = k$.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180961-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given a hash table with hash function $h$, an element with key $k$ is placed in what slot?
|
||||
Back: $h(k)$
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180962-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given a hash table `T[0:m-1]`, what is the domain of a hash function?
|
||||
Back: The universe of keys.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180964-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given a hash table `T[0:m-1]`, what is the codomain of a hash function?
|
||||
Back: $\{0, \ldots, m - 1\}$
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180965-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does a hash value refer to?
|
||||
Back: The result produced by a hash function.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180967-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distinguishes a slot from a hash value?
|
||||
Back: The former is a memory address. The latter is the result of a hash function.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180968-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What relationship exists between slots and hash values?
|
||||
Back: A slot is often referred to by a hash value.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180970-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Given hash function $h$, key $k$ {hashes} to slot $h(k)$.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180971-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What combinatorial concept is used to prove the presence of hash table collisions?
|
||||
Back: The pigeonhole principle.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180973-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When *must* there exist hash table collisions?
|
||||
Back: When the number of hashed keys is greater than the number of slots.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180974-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does a hash table collision refer to?
|
||||
Back: Two keys hashing to the same slot.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180976-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
With respect to hash tables, what imagery is invoked by the term "hash"?
|
||||
Back: Random mixing and chopping.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180977-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Are hash tables or direct-address tables more general?
|
||||
Back: Hash tables.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180979-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is a direct-address table reinterpreted as a hash table?
|
||||
Back: It's a hash table with hash function $h(k) = k$.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
<!--ID: 1716307180980-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
@ -313,14 +313,14 @@ Given command $S$ and predicates $Q$ and $R$, $$wp(S, Q \land R) = wp(S, Q) \lan
|
|||
Basic
|
||||
What does Distributivity of Conjunction state?
|
||||
Back: Given command $S$ and predicates $Q$ and $R$, $wp(S, Q \land R) = wp(S, Q) \land wp(S, R)$.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047060-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Distributivity of Conjunction states {$wp(S, Q \land R)$} $=$ {$wp(S, Q) \land wp(S, R)$}.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047062-->
|
||||
END%%
|
||||
|
||||
|
@ -328,7 +328,7 @@ END%%
|
|||
Basic
|
||||
In Gries's exposition, is Distributivity of Conjunction taken as an axiom or a theorem?
|
||||
Back: An axiom.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047064-->
|
||||
END%%
|
||||
|
||||
|
@ -336,7 +336,7 @@ END%%
|
|||
Basic
|
||||
Is $wp(S, Q) \land wp(S, R) \Rightarrow wp(S, Q \land R)$ true if $S$ is nondeterministic?
|
||||
Back: Yes.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047065-->
|
||||
END%%
|
||||
|
||||
|
@ -344,18 +344,10 @@ END%%
|
|||
Basic
|
||||
Is $wp(S, Q \land R) \Rightarrow wp(S, Q) \land wp(S, R)$ true if $S$ is nondeterministic?
|
||||
Back: Yes.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047067-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for command $S$ to be nondeterministic?
|
||||
Back: Execution may not be the same even if begun in the same state.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047068-->
|
||||
END%%
|
||||
|
||||
### Law of Monotonicity
|
||||
|
||||
Given command $S$ and predicates $Q$ and $R$, if $Q \Rightarrow R$, then $wp(S, Q) \Rightarrow wp(S, R)$.
|
||||
|
@ -389,6 +381,129 @@ Reference: Reference: Gries, David. *The Science of Programming*. Texts and Mon
|
|||
<!--ID: 1716227332870-->
|
||||
END%%
|
||||
|
||||
### Distributivity of Disjunction
|
||||
|
||||
Given command $S$ and predicates $Q$ and $R$, $$wp(S, Q) \lor wp(S, R) \Rightarrow wp(S, Q \lor R)$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does Distributivity of Disjunction state?
|
||||
Back: Given command $S$ and predicates $Q$ and $R$, $wp(S, Q) \lor wp(S, R) \Rightarrow wp(S, Q \lor R)$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716310927694-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Distributivity of Disjunction states {1:$wp(S, Q) \lor wp(S, r)$} $\Rightarrow$ {1:$wp(S, Q \lor R)$}.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716310927697-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In Gries's exposition, is Distributivity of Disjunction taken as an axiom or a theorem?
|
||||
Back: A theorem.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716310927698-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $wp(S, Q \lor R) \Rightarrow wp(S, Q) \lor wp(S, R)$ true if $S$ is nondeterministic?
|
||||
Back: No.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716310927700-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $wp(S, Q) \lor wp(S, R) \Rightarrow wp(S, Q \lor R)$ true if $S$ is nondeterministic?
|
||||
Back: Yes.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716310927701-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $wp(S, Q \lor R) \Rightarrow wp(S, Q) \lor wp(S, R)$ true if $S$ is deterministic?
|
||||
Back: Yes.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716310927703-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is $wp(S, Q) \lor wp(S, R) \Rightarrow wp(S, Q \lor R)$ true if $S$ is deterministic?
|
||||
Back: Yes.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716310927710-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What command does Gries use to demonstrate nondeterminism?
|
||||
Back: The flipping of a coin.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716310927712-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for command $S$ to be nondeterministic?
|
||||
Back: Execution may not be the same even if begun in the same state.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1715969047068-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $S$ flip a coin and $Q$ be flipping heads. What is $wp(S, Q)$?
|
||||
Back: $F$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716310927713-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $S$ flip a coin and $Q$ be flipping tails. What is $wp(S, Q)$?
|
||||
Back: $F$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716310927715-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $S$ flip a coin, $Q$ be flipping heads, and $R$ be flipping tails. What is $wp(S, Q \lor R)$?
|
||||
Back: $T$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716310927716-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What determines the direction of implication in Distributivity of Disjunction?
|
||||
Back: $F \Rightarrow T$ evaluates truthily but $T \Rightarrow F$ does not.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716310927718-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* does Distributivity of Disjunction use an implication instead of equality?
|
||||
Back: Because the underlying command may be nondeterministic.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716311034191-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*When* does Distributivity of Disjunction hold under equality (instead of implication)?
|
||||
Back: When the underlying command is deterministic.
|
||||
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1716311034194-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|
@ -138,6 +138,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1716237736487-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why is "$x$ is an int definable in one line of type" an invalid entrance requirement?
|
||||
Back: Because this sentence cannot be expressed in predicate logic.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007883-->
|
||||
END%%
|
||||
|
||||
## Russell's Paradox
|
||||
|
||||
Let $R = \{x \mid x \not\in x\}$. Then $R \in R \Leftrightarrow R \not\in R$.
|
||||
|
|
|
@ -359,6 +359,82 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1715900348153-->
|
||||
END%%
|
||||
|
||||
### General Form
|
||||
|
||||
For any set $A$, there exists a set $B$ whose elements are exactly the members of the members of $A$: $$\forall A, \exists B, \forall x, x \in B \Leftrightarrow (\exists b \in B, x \in b)$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does the union axiom (general form) state?
|
||||
Back: For any set $A$, there exists a set $B$ whose elements are exactly the members of the members of $A$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007845-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the union axiom (general form) expressed using first-order logic?
|
||||
Back: $$\forall A, \exists B, \forall x, x \in B \Leftrightarrow (\exists b \in B, x \in b)$$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007849-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What advantage does the general form of the union axiom have over its prelimiary form?
|
||||
Back: The general form can handle infinite sets.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007851-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the preliminary form of the union axiom proven using the general form?
|
||||
Back: For any sets $a$ and $b$, $\bigcup \{a, b\} = a \cup b$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007853-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the result of $\bigcup \{\{2, 4, 6\}, \{6, 16, 26\}, \{0\}\}$?
|
||||
Back: $\{2, 4, 6, 16, 26, 0\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007855-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the result of $\bigcup \varnothing$?
|
||||
Back: $\varnothing$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007857-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $\bigcup A$ represented in first-order logic?
|
||||
Back: $\{x \mid \exists b \in A, x \in b\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007859-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Roughly speaking, how does $\bigcup A$ adjust as $A$ gets larger?
|
||||
Back: $\bigcup A$ gets larger.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007861-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $A \subseteq B$, how do $\bigcup A$ and $\bigcup B$ relate?
|
||||
Back: $\bigcup A \subseteq \bigcup B$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007864-->
|
||||
END%%
|
||||
|
||||
## Power Set Axiom
|
||||
|
||||
For any set $a$, there is a set whose members are exactly the subsets of $a$: $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
|
||||
|
@ -518,6 +594,68 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1716074312909-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $\bigcap A$ represented in first-order logic?
|
||||
Back: $\{x \mid \forall b \in A, x \in b\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007866-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{1:$\forall$} is to {2:$\bigcap$} whereas {2:$\exists$} is to {1:$\bigcup$}.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007868-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the result of $\bigcap \{\{2, 4, 6\}, \{6, 16, 26\}, \{0\}\}$?
|
||||
Back: $\{6\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007870-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How does $\bigcap A$ adjust as $A$ gets larger?
|
||||
Back: $\bigcap A$ gets smaller.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007872-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
If $A \subseteq B$, how do $\bigcap A$ and $\bigcap B$ relate?
|
||||
Back: $\bigcap B \subseteq \bigcap A$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007874-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What class does $\bigcap \varnothing$ correspond to?
|
||||
Back: The class of all sets.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007876-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* does $\bigcap \varnothing$ present a problem?
|
||||
Back: Every set $x$ is a member of every member of $\varnothing$ (vacuously).
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007878-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{$\bigcap \varnothing$} is to set theory as {division by zero} is to arithmetic.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1716309007881-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
|
|
Loading…
Reference in New Issue