|
|
|
@ -9,7 +9,7 @@ tags:
|
|
|
|
|
|
|
|
|
|
## Overview
|
|
|
|
|
|
|
|
|
|
A **function** $F$ is a single-valued [[relations|relation]]. We say $F$ **maps $A$ into $B$**, denoted $F \colon A \rightarrow B$, if and only if $F$ is a function, $\mathop{\text{dom}}A$, and $\mathop{\text{ran}}F \subseteq B$.
|
|
|
|
|
A **function** $F$ is a single-valued [[relations|relation]]. We say $F$ **maps $A$ into $B$**, denoted $F \colon A \rightarrow B$, if and only if $F$ is a function, $\mathop{\text{dom}}F = A$, and $\mathop{\text{ran}}F \subseteq B$.
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
@ -122,6 +122,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|
|
|
|
<!--ID: 1718464126883-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Is $\varnothing$ a function?
|
|
|
|
|
Back: Yes.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913529-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
## Injections
|
|
|
|
|
|
|
|
|
|
A function is **injective** or **one-to-one** if each element of the codomain is mapped to by at most one element of the domain.
|
|
|
|
@ -258,6 +266,129 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|
|
|
|
<!--ID: 1718465870541-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
### Left Inverses
|
|
|
|
|
|
|
|
|
|
Assume that $F \colon A \rightarrow B$ is a function and $A \neq \varnothing$. Then there exists a function $G \colon B \rightarrow A$ (a **left inverse**) such that $G \circ F = I_A$ if and only if $F$ is one-to-one.
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
What is the most specific mathematical object that describes a left inverse?
|
|
|
|
|
Back: A function.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719683931406-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
How is a left inverse of $F \colon A \rightarrow B$ defined?
|
|
|
|
|
Back: As a function $G \colon B \rightarrow A$ such that $G \circ F = I_A$.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719684322548-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
How is a left inverse of set $A$ defined?
|
|
|
|
|
Back: N/A.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719684322553-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Consider $F \colon A \rightarrow B$. If $F$ has a left inverse, what is its domain?
|
|
|
|
|
Back: $B$
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719680660507-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
What does $I_A$ usually denote?
|
|
|
|
|
Back: The identity function on set $A$.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913532-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
How is the identity function on set $B$ denoted?
|
|
|
|
|
Back: $I_B$
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719683703723-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Consider $F \colon A \rightarrow B$. If $F$ has a left inverse, what is its codomain?
|
|
|
|
|
Back: $A$
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719680660511-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Let $G$ be a left inverse of $F \colon A \rightarrow B$. How can we more simply write $G \circ F$?
|
|
|
|
|
Back: $I_A$
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913534-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Let $G$ be a left inverse of $F \colon A \rightarrow B$. How can we more simply write $F \circ G$?
|
|
|
|
|
Back: N/A.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913535-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Let $F$ be a left inverse of function $G$. How do they interestingly compose?
|
|
|
|
|
Back: As $F \circ G$.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913538-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Cloze
|
|
|
|
|
Suppose $F \colon A \rightarrow B$ and {1:$A \neq \varnothing$}. $F$ has a {2:left} inverse iff $F$ is {3:one-to-one}.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913540-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Does proving "left inverses iff injective" rely on AoC?
|
|
|
|
|
Back: No.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913542-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
What are the hypotheses of "left inverses iff injective"?
|
|
|
|
|
Back: Suppose $F \colon A \rightarrow B$ such that $A \neq \varnothing$.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719683703726-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Let $F \colon A \rightarrow B$. *Why* does "left inverses iff injective" require $A \neq \varnothing$?
|
|
|
|
|
Back: Because a mapping from $B$ to $\varnothing$ cannot be a function.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719683703729-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Let $F \colon A \rightarrow B$ and $A \neq \varnothing$. *Why* does "left inverses iff injective" require AoC?
|
|
|
|
|
Back: It doesn't.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719683703730-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
## Surjections
|
|
|
|
|
|
|
|
|
|
A function is **surjective** or **onto** if each element of the codomain is mapped to by at least one element of the domain. That is, **$F$ maps $A$ onto $B$** if and only if $F$ is a function, $\mathop{\text{dom}}A$, and $\mathop{\text{ran}}F = B$.
|
|
|
|
@ -369,6 +500,120 @@ Reference: “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 202
|
|
|
|
|
<!--ID: 1718465870573-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
### Right Inverses
|
|
|
|
|
|
|
|
|
|
Assume that $F \colon A \rightarrow B$ is a function and $A \neq \varnothing$. Then there exists a function $G \colon B \rightarrow A$ (a right inverse) such that $F \circ G = I_B$ if and only if $F$ maps $A$ onto $B$.
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
What is the most specific mathematical object that describes a right inverse?
|
|
|
|
|
Back: A function.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719683931410-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
How is a right inverse of $F \colon A \rightarrow B$ defined?
|
|
|
|
|
Back: As a function $G \colon B \rightarrow A$ such that $F \circ G = I_B$.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719684322557-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
How is a right inverse of set $A$ defined?
|
|
|
|
|
Back: N/A.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719684322561-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Cloze
|
|
|
|
|
{1:Left} inverses are to {2:injections} whereas {2:right} inverses are to {1:surjections}.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913533-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Consider $F \colon A \rightarrow B$. If $F$ has a right inverse, what is its domain?
|
|
|
|
|
Back: $B$
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719680660514-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Consider $F \colon A \rightarrow B$. If $F$ has a right inverse, what is its codomain?
|
|
|
|
|
Back: $A$
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719680660513-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Let $G$ be a right inverse of $F \colon A \rightarrow B$. How can we more simply write $G \circ F$?
|
|
|
|
|
Back: N/A.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913536-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Let $G$ be a right inverse of $F \colon A \rightarrow B$. How can we more simply write $F \circ G$?
|
|
|
|
|
Back: The identity function on $B$.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913537-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Let $F$ be a right inverse of function $G$. How do they interestingly compose?
|
|
|
|
|
Back: As $G \circ F$.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913539-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Cloze
|
|
|
|
|
Suppose $F \colon A \rightarrow B$ and {1:$A \neq \varnothing$}. $F$ has a {2:right} inverse iff $F$ is {3:onto $B$}.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913541-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Does proving "right inverses iff surjective" rely on AoC?
|
|
|
|
|
Back: Yes.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913543-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
What are the hypotheses of "right inverses iff surjective"?
|
|
|
|
|
Back: Suppose $F \colon A \rightarrow B$ such that $A \neq \varnothing$.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719683703732-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Let $F \colon A \rightarrow B$. *Why* does "right inverses iff surjective" require $A \neq \varnothing$?
|
|
|
|
|
Back: Because a mapping from $B$ to $\varnothing$ cannot be a function.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719683703734-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Let $F \colon A \rightarrow B$ and $A \neq \varnothing$. *Why* does "right inverses iff surjective" require AoC?
|
|
|
|
|
Back: There is no other mechanism for choosing an $x \in A$ for *each* $y \in B$.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719683703736-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
## Bijections
|
|
|
|
|
|
|
|
|
|
A function is **bijective** or a **one-to-one correspondence** if each element of the codomain is mapped to by exactly one element of the domain.
|
|
|
|
@ -441,6 +686,14 @@ END%%
|
|
|
|
|
## Inverses
|
|
|
|
|
|
|
|
|
|
Let $F$ be an arbitrary set. The **inverse** of $F$ is the set $$F^{-1} = \{\langle u, v \rangle \mid vFu\}$$
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
What is the most specific mathematical object that describes an inverse?
|
|
|
|
|
Back: A relation.
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719683931414-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
What kind of mathematical object does the inverse operation apply to?
|
|
|
|
@ -656,6 +909,14 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|
|
|
|
<!--ID: 1719398756558-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Consider function $F \colon \varnothing \rightarrow B$. What is $F^{-1}$?
|
|
|
|
|
Back: $\varnothing$
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719681913530-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
## Compositions
|
|
|
|
|
|
|
|
|
|
Let $F$ and $G$ be arbitrary sets. The **composition** of $F$ and $G$ is the set $$F \circ G = \{\langle u, v \rangle \mid \exists t, uGt \land tFv \}$$
|
|
|
|
@ -997,14 +1258,6 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|
|
|
|
<!--ID: 1719103644319-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
How is $F^{-1}[\![A]\!]$ defined using set-builder notation?
|
|
|
|
|
Back: $F^{-1}[\![A]\!] = \{x \in \mathop{\text{dom}} F \mid F(x) \in A \}$
|
|
|
|
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
|
|
|
<!--ID: 1719103644320-->
|
|
|
|
|
END%%
|
|
|
|
|
|
|
|
|
|
%%ANKI
|
|
|
|
|
Basic
|
|
|
|
|
Let $F$ be an arbitrary set. What is $F[\![\varnothing]\!]$?
|
|
|
|
|