An ordered pair of $x$ and $y$, denoted $\langle x, y \rangle$, is defined as: $\langle x, y \rangle = \{\{x\}, \{x, y\}\}$. We define the **first coordinate** of $\langle x, y \rangle$ to be $x$ and the **second coordinate** to be $y$.
%%ANKI
Basic
How is an ordered pair of $x$ and $y$ denoted?
Back: $\langle x, y \rangle$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753102-->
END%%
%%ANKI
Basic
What property must any satisfactory definition of $\langle x, y \rangle$ satisfy?
Back: $x$ and $y$, along with their order, are uniquely determined.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679524930-->
END%%
%%ANKI
Basic
Which of ordered pairs or sets is more general?
Back: Sets.
<!--ID: 1717678753108-->
END%%
%%ANKI
Basic
What biconditional is used to prove the well-definedness of $\langle x, y \rangle$?
Back: $(\langle x, y \rangle = \langle u, v \rangle) \Leftrightarrow (x = u \land y = v)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753111-->
END%%
%%ANKI
Cloze
{$\{1, 2\}$} is a set whereas {$\langle 1, 2 \rangle$} is an ordered pair.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
A **relation** $R$ is a set of ordered pairs. The **domain** of $R$ ($\mathop{\text{dom}}{R}$), the **range** of $R$ ($\mathop{\text{ran}}{R}$), and the **field** of $R$ ($\mathop{\text{fld}}{R}$) is defined as:
* $x \in \mathop{\text{dom}}{R} \Leftrightarrow \exists y, \langle x, y \rangle \in R$
The following is analagous to what logical expression of commuting quantifiers?$$\mathop{\text{dom}}\bigcup\mathscr{A} = \bigcup\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$$
The following is analagous to what logical expression of commuting quantifiers? $$\mathop{\text{dom}}\bigcap\mathscr{A} \subseteq \bigcap\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$$
Back: $\exists x, \forall y, P(x, y) \Rightarrow \forall y, \exists x, P(x, y)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739914-->
END%%
%%ANKI
Cloze
For any set $\mathscr{A}$, $\mathop{\text{ran}}\bigcup\mathscr{A}$ {$=$} $\bigcup\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739918-->
END%%
%%ANKI
Basic
The following is analagous to what predicate logical expression of commuting quantifiers? $$\mathop{\text{ran}}\bigcup\mathscr{A} = \bigcup\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$$
Back: $\exists x, \exists y, P(x, y) \Leftrightarrow \exists y, \exists x, P(x, y)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739922-->
END%%
%%ANKI
Cloze
For any set $\mathscr{A}$, $\mathop{\text{ran}}\bigcap\mathscr{A}$ {$\subseteq$} $\bigcap\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
The following is analagous to what logical expression of commuting quantifiers? $$\mathop{\text{ran}}\bigcap\mathscr{A} \subseteq \bigcap\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$$
A set $A$ is **single-valued** iff for each $x$ in $\mathop{\text{dom}}A$, there is only one $y$ such that $xAy$. A set $A$ is **single-rooted** iff for each $y \in \mathop{\text{ran}}A$, there is only one $x$ such that $xAy$.
%%ANKI
Basic
What does it mean for a set $A$ to be "single-valued"?
Back: For each $x \in \mathop{\text{dom}}A$, there exists a unique $y$ such that $xAy$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718427443355-->
END%%
%%ANKI
Basic
What does it mean for a set $A$ to be "single-rooted"?
We define ordered triples as $\langle x, y, z \rangle = \langle \langle x, y \rangle, z \rangle$. We define ordered quadruples as $\langle x_1, x_2, x_3, x_4 \rangle = \langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, x_4 \rangle$. This idea generalizes to $n$-tuples. As a special case, we define the $1$-tuple $\langle x \rangle = x$.
An **$n$-ary relation on $A$** is a set of ordered $n$-tuples with all **components** in $A$. Keep in mind though, a unary ($1$-ary) relation on $A$ is just a subset of $A$ and may not be a relation at all.
%%ANKI
Basic
Ordered triple $\langle x, y, z \rangle$ is "syntactic sugar" for what?
Back: $\langle \langle x, y \rangle, z \rangle$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620058-->
END%%
%%ANKI
Basic
Ordered quadruple $\langle x_1, x_2, x_3, x_4 \rangle$ is "syntactic sugar" for what?
Given relation $R$ and set $A$, $R$ is an **equivalence relation on $A$** iff $R$ is a binary relation on $A$ that is reflexive on $A$, symmetric, and transitive:
* $R$ is **reflexive on $A$** if $xRx$ for all $x \in A$.
* $R$ is **symmetric** if whenever $xRy$, then $yRx$.
* $R$ is **transitive** if whenever $xRy$ and $yRz$, then $xRz$.
%%ANKI
Cloze
Binary relation $R$ is {reflexive on $A$} iff {$xRx$ for all $x \in A$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720967429790-->
END%%
%%ANKI
Basic
Why is it incorrect to ask if $R$ is reflexive?
Back: We have to ask if $R$ is reflexive on some reference set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720967429800-->
END%%
%%ANKI
Basic
Given $R = \{\langle a, a \rangle, \langle b, c \rangle\}$, is $R$ reflexive?
Back: N/A. The question must provide a reference set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720967429804-->
END%%
%%ANKI
Basic
Given $R = \{\langle a, a \rangle, \langle b, c \rangle\}$, is $R$ reflexive on $a$?
Back: N/A. We must ask if $R$ is reflexive on a set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720967429808-->
END%%
%%ANKI
Basic
Given $R = \{\langle a, a \rangle, \langle b, c \rangle\}$, is $R$ reflexive on $\{a\}$?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720967429812-->
END%%
%%ANKI
Basic
Given $R = \{\langle a, a \rangle, \langle b, c \rangle\}$, is $R$ reflexive on $\{a, b\}$?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720967429817-->
END%%
%%ANKI
Basic
Given $R = \{\langle a, a \rangle, \langle b, c \rangle\}$, *why* isn't $R$ reflexive on $\{a, b\}$?
Back: Because $\langle b, b \rangle \not\in R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
The set $[x]_R$ is defined by $[x]_R = \{t \mid xRt\}$. If $R$ is an equivalence relation and $x \in \mathop{\text{fld}}R$, then $[x]_R$ is called the **equivalence class of $x$ (modulo $R$)**. If the relation $R$ is fixed by the context, we may write just $[x]$.
%%ANKI
Basic
How is set $[x]_R$ defined?
Back: As $\{t \mid xRt\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094107-->
END%%
%%ANKI
Basic
What is an equivalence class?
Back: A set of members mutually related w.r.t an equivalence relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015574-->
END%%
%%ANKI
Basic
What kind of mathematical object is $x$ in $[x]_R$?
Back: A set (or urelement).
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094110-->
END%%
%%ANKI
Basic
What kind of mathematical object is $R$ in $[x]_R$?
Back: A relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094114-->
END%%
%%ANKI
Basic
What compact notation is used to denote $\{t \mid xRt\}$?
Back: $[x]_R$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094120-->
END%%
%%ANKI
Cloze
If {1:$R$ is an equivalence relation} and {1:$x \in \mathop{\text{fld} }R$}, then $[x]_R$ is called the {2:equivalence class of $x$} (modulo {2:$R$}).
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094128-->
END%%
%%ANKI
Basic
Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $x$?
Back: A set (or urelement).
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094137-->
END%%
%%ANKI
Basic
Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $R$?
Back: A relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094144-->
END%%
%%ANKI
Basic
Consider an equivalence class of $x$ (modulo $R$). What condition does $x$ necessarily satisfy?
Back: $x \in \mathop{\text{fld}}R$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094149-->
END%%
%%ANKI
Basic
Consider an equivalence class of $x$ (modulo $R$). What condition does $R$ necessarily satisfy?
Back: $R$ is an equivalence relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094154-->
END%%
%%ANKI
Cloze
Assume $R$ is an equivalence relation on $A$ and that $x, y \in A$. Then {1:$[x]_R$} $=$ {1:$[y]_R$} iff {2:$xRy$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094158-->
END%%
## Partitions
A **partition** $\Pi$ of a set $A$ is a set of nonempty subsets of $A$ that is disjoint and exhaustive.
%%ANKI
Basic
What kind of mathematical object is a partition of a set?
Back: A set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094026-->
END%%
%%ANKI
Basic
What is a partition of a set $A$?
Back: A set of nonempty subsets of $A$ that is disjoint and exhaustive.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094053-->
END%%
%%ANKI
Basic
Let $\Pi$ be a partition of a set $A$. When does $\Pi = \varnothing$?
Back: If and only if $A = \varnothing$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094059-->
END%%
%%ANKI
Basic
Let $\Pi$ be a partition of set $A$. What property must each *individual* member of $\Pi$ exhibit?
Back: Each member is nonempty.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094065-->
END%%
%%ANKI
Basic
Let $\Pi$ be a partition of set $A$. What property must each *pair* of members of $\Pi$ exhibit?
Back: Each pair must be disjoint.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094072-->
END%%
%%ANKI
Basic
Let $\Pi$ be a partition of set $A$. Which property do all the members of $\Pi$ exhibit together?
Back: The members of $\Pi$ must be exhaustive.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094077-->
END%%
%%ANKI
Basic
What does it mean for a partition $\Pi$ of $A$ to be exhaustive?
Back: Every member of $A$ must appear in one of the members of $\Pi$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094082-->
END%%
%%ANKI
Basic
Is $A$ a partition of set $A$?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094086-->
END%%
%%ANKI
Basic
Is $\{A\}$ a partition of set $A$?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094091-->
END%%
%%ANKI
Basic
Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1, 2\}, \{2, 3, 4\}\}$ a partition of $A$?
Back: Each pair of members of a partition of $A$ must be disjoint.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094095-->
END%%
%%ANKI
Basic
Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1\}, \{2\}, \{3\}\}$ a partition of $A$?
Back: The members of a partition of $A$ must be exhaustive.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094099-->
END%%
%%ANKI
Basic
Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1, 2, 3\}, \{4\}\}$ a partition of $A$?
Back: N/A. It is.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094103-->
END%%
Assume $\Pi$ is a partition of set $A$. Then the relation $R$ is an equivalence relation: $$xRy \Leftrightarrow (\exists B \in \Pi, x \in B \land y \in B)$$
%%ANKI
Basic
Let $\Pi$ be a partition of $A$. What equivalence relation $R$ is induced?
Back: $R$ such that $xRy \Leftrightarrow (\exists B \in \Pi, x \in B \land y \in B)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721136390215-->
END%%
## Quotient Sets
If $R$ is an equivalence relation on $A$, then the **quotient set** "$A$ modulo $R$" is defined as $$A / R = \{[x]_R \mid x \in A\}.$$
The **natural map** (or **canonical map**) $\phi : A \rightarrow A / R$ is given by $$\phi(x) = [x]_R.$$
Note that $A / R$, the set of all equivalence classes, is a partition of $A$.
%%ANKI
Basic
Let $R$ be an equivalence relation on $A$. What partition is induced?
Back: $A / R = \{[x]_R \mid x \in A\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721136390208-->
END%%
%%ANKI
Basic
Members of $A / R$ are called what?
Back: Equivalence classes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408454-->
END%%
%%ANKI
Basic
$A / R$ is a partition of what set?
Back: $A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408484-->
END%%
%%ANKI
Basic
How is quotient set $A / R$ pronounced?
Back: As "$A$ modulo $R$".
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408508-->
END%%
%%ANKI
Basic
Consider quotient set $A / R$. What kind of mathematical object is $A$?
Back: A set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408514-->
END%%
%%ANKI
Basic
Consider quotient set $A / R$. What kind of mathematical object is $R$?
Back: An equivalence relation on $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408520-->
END%%
%%ANKI
Basic
How is quotient set $A / R$ defined?
Back: As set $\{[x]_R \mid x \in A\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408525-->
END%%
%%ANKI
Basic
Given quotient set $A / R$, what is the domain of its natural map?
Back: $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408490-->
END%%
%%ANKI
Basic
Given quotient set $A / R$, what is the codomain of its natural map?
Back: $A / R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408495-->
END%%
%%ANKI
Basic
Consider quotient set $A / R$. How is the natural map $\phi$ defined?
Back: $\phi \colon A \rightarrow A / R$ given by $\phi(x) = [x]_R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408501-->
END%%
%%ANKI
Basic
Given quotient set $A / R$, what is the domain of its canonical map?
Back: $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408531-->
END%%
%%ANKI
Basic
Given quotient set $A / R$, what is the codomain of its canonical map?
Back: $A / R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408537-->
END%%
%%ANKI
Basic
Consider quotient set $A / R$. How is the canonical map $\phi$ defined?
Back: $\phi \colon A \rightarrow A / R$ given by $\phi(x) = [x]_R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218465987-->
END%%
%%ANKI
Basic
Consider set $\omega$ and equivalence relation $\sim$. How is the relevant quotient set denoted?
Back: As $\omega / {\sim}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Let $R$ be an equivalence relation on $A$ and $x \in A$. Then {1:$x$} (modulo {1:$R$}) is an {2:equivalence class} whereas {2:$A$} modulo {2:$R$} is a {1:quotient set}.
* “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).