Fixup flashcards. Cartesian products.
parent
044b58e0c6
commit
7664346b62
|
@ -235,7 +235,7 @@
|
|||
"_journal/2024-02-19.md": "30d16c5373deb9cb128d2e7934ae256a",
|
||||
"_journal/2024-02/2024-02-18.md": "67e36dbbb2cac699d4533b5a2eaeb629",
|
||||
"combinatorics/permutations.md": "1b994b48798699655ee64df29c640251",
|
||||
"combinatorics/combinations.md": "ce13308125a137c1fb1ed3918dbe5ccc",
|
||||
"combinatorics/combinations.md": "396fc32255710eaf33213efaafdc43d4",
|
||||
"_journal/2024-02-20.md": "b85ba0eeeb16e30a602ccefabcc9763e",
|
||||
"_journal/2024-02/2024-02-19.md": "df1a9ab7ab89244021b3003c84640c78",
|
||||
"combinatorics/inclusion-exclusion.md": "c27b49ee03cc5ee854d0e8bd12a1d505",
|
||||
|
@ -249,7 +249,7 @@
|
|||
"c17/strings.md": "cd4c15b6616613d2d2458aed3053306c",
|
||||
"c17/index.md": "78576ee41d0185df82c59999142f4edb",
|
||||
"c17/escape-sequences.md": "a8b99070336878b4e8c11e9e4525a500",
|
||||
"c17/declarations.md": "65d2faaf8cc50878ad80126109e98b1f",
|
||||
"c17/declarations.md": "29f3d23890301d7d0e023310d44540df",
|
||||
"algorithms/sorting/merge-sort.md": "6506483f7df6507cee0407bd205dbedd",
|
||||
"_journal/2024-02-24.md": "9bb319d5014caf962a9ce3141076cff4",
|
||||
"_journal/2024-02/2024-02-23.md": "0aad297148e8cc4058b48b7e45787ca7",
|
||||
|
@ -441,7 +441,7 @@
|
|||
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
||||
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||
"_journal/2024-05/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||
"x86-64/registers.md": "fb3cbacb2e0665c347ba0d4a9389fb69",
|
||||
"x86-64/registers.md": "4bcc04cea66b37d404ac430b0f034697",
|
||||
"_journal/2024-05-15.md": "4e6a7e6df32e93f0d8a56bc76613d908",
|
||||
"_journal/2024-05/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||
"_journal/2024-05-16.md": "580c7ec61ec56be92fa8d6affcf0a5f6",
|
||||
|
@ -475,9 +475,9 @@
|
|||
"_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869",
|
||||
"_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae",
|
||||
"_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95",
|
||||
"algebra/set.md": "92de8c0197cef54b5c6c269aac6b93b2",
|
||||
"algebra/set.md": "7eb2f9cae83e9aaf16aa42f82cea944f",
|
||||
"algebra/boolean.md": "ee41e624f4d3d3aca00020d9a9ae42c8",
|
||||
"git/merge-conflicts.md": "af3603c7a8fde60a1982c0950d209b77",
|
||||
"git/merge-conflicts.md": "761ad6137ec51d3877f7d5b3615ca5cb",
|
||||
"_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337",
|
||||
"_journal/2024-05/2024-05-27.md": "e498d5154558ebcf7261302403ea8016",
|
||||
"_journal/2024-05-29.md": "aee3f3766659789d7dfb63dd247844cc",
|
||||
|
@ -500,20 +500,24 @@
|
|||
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
|
||||
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
|
||||
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
|
||||
"set/relations.md": "411e81682aa5a731cd501031dc3ab59d",
|
||||
"set/relations.md": "42f3dff509071ad31d6831e1c05e5aa9",
|
||||
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
|
||||
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
|
||||
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
|
||||
"_journal/2024-06/2024-06-07.md": "c6bfc4c1e5913d23ea7828a23340e7d3",
|
||||
"lambda-calculus/alpha-conversion.md": "c0d40271a14b1f44b937de7791ca089b",
|
||||
"lambda-calculus/index.md": "a03bdca6459a9094cabbb8992063ada6",
|
||||
"lambda-calculus/index.md": "756c93b8717fd00b04f8a99509066486",
|
||||
"x86-64/instructions/condition-codes.md": "56ad6eb395153609a1ec51835925e8c9",
|
||||
"x86-64/instructions/logical.md": "818428b9ef84753920dc61e5c2de9199",
|
||||
"x86-64/instructions/arithmetic.md": "271218d855e7291f119f96e91f582738",
|
||||
"x86-64/instructions/access.md": "ab8605e11c0a3936735b18993e215513",
|
||||
"x86-64/instructions/index.md": "72c19067e938ab39ea51d25d6ac2bad9",
|
||||
"_journal/2024-06-09.md": "935b3ddf65c51e680ac5c000c7e380af",
|
||||
"_journal/2024-06/2024-06-08.md": "9e1ebc8882a395b96ca765ad5c982d68"
|
||||
"_journal/2024-06/2024-06-08.md": "9e1ebc8882a395b96ca765ad5c982d68",
|
||||
"_journal/2024-06-10.md": "84d27300b97c8544ab4ec68b06edd824",
|
||||
"_journal/2024-06/2024-06-09.md": "4c336a39775846b416aa73278435065f",
|
||||
"_journal/2024-06-11.md": "4988503ee98aa4fe32d5eeaea2cc65a5",
|
||||
"_journal/2024-06/2024-06-10.md": "1fe3a8beb03b1cc9af188b85933339e4"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -0,0 +1,9 @@
|
|||
---
|
||||
title: "2024-06-11"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2024-06-10"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Various notes on the Cartesian product.
|
|
@ -87,6 +87,46 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1716396060620-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the Cartesian product commutative?
|
||||
Back: No.
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881694-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* isn't the Cartesian product commutative?
|
||||
Back: Because the Cartesian product comprises of *ordered* pairs.
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881698-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $A \neq \varnothing$ and $B \neq \varnothing$. When does $A \times B = B \times A$?
|
||||
Back: When $A = B$.
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881702-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Suppose $A \neq \varnothing$ and $A \neq B$. When does $A \times B = B \times A$?
|
||||
Back: When $B = \varnothing$.
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881705-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Under what two conditions is $A \times B = B \times A$?
|
||||
Back: $A = B$ or either set is the empty set.
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881709-->
|
||||
END%%
|
||||
|
||||
### Associative Laws
|
||||
|
||||
For any sets $A$ and $B$, $$\begin{align*} A \cup (B \cup C) & = (A \cup B) \cup C \\ A \cap (B \cap C) & = (A \cap B) \cap C \end{align*}$$
|
||||
|
@ -115,6 +155,22 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1716396060625-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Is the Cartesian product associative?
|
||||
Back: No.
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881712-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* isn't the Cartesian product associative?
|
||||
Back: The association of parentheses defines the nesting of the ordered pairs.
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881715-->
|
||||
END%%
|
||||
|
||||
### Distributive Laws
|
||||
|
||||
For any sets $A$, $B$, and $C$, $$\begin{align*} A \cap (B \cup C) & = (A \cap B) \cup (A \cap C) \\ A \cup (B \cap C) & = (A \cup B) \cap (A \cup C) \end{align*}$$
|
||||
|
@ -253,6 +309,94 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1717372322287-->
|
||||
END%%
|
||||
|
||||
For any sets $A$, $B$, and $C$, $$\begin{align*} A \times (B \cap C) & = (A \times B) \cap (A \times C) \\ A \times (B \cup C) & = (A \times B) \cup (A \times C) \\ A \times (B - C) & = (A \times B) - (A \times C) \end{align*}$$
|
||||
%%ANKI
|
||||
Basic
|
||||
Which algebra of sets operators is the Cartesian product distributive over?
|
||||
Back: $\cap$, $\cup$, and $-$
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881718-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distributivity rule is satisfied by $\cap$ and $\times$?
|
||||
Back: $A \times (B \cap C) = (A \times B) \cap (A \times C)$
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881723-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The Cartesian product satisfies distributivity: {$A \times (B \cap C)$} $=$ {$(A \times B) \cap (A \times C)$}.
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881726-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distributivity rule is satisfied by $\cup$ and $\times$?
|
||||
Back: $A \times (B \cup C) = (A \times B) \cup (A \times C)$
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881731-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The Cartesian product satisfies distributivity: {$A \times (B \cup C)$} $=$ {$(A \times B) \cup (A \times C)$}.
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881735-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What distributivity rule is satisfied by $-$ and $\times$?
|
||||
Back: $A \times (B - C) = (A \times B) - (A \times C)$
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881742-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The Cartesian product satisfies distributivity: {$A \times (B - C)$} $=$ {$(A \times B) - (A \times C)$}.
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881752-->
|
||||
END%%
|
||||
|
||||
In addition, $$\begin{align*} A \times \bigcup \mathscr{B} & = \bigcup\, \{A \times X \mid X \in \mathscr{B}\} \\ A \times \bigcap \mathscr{B} & = \bigcap\, \{A \times X \mid X \in \mathscr{B}\} \end{align*}$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the generalization of identity $A \times (B \cup C) = (A \times B) \cup (A \times C)$?
|
||||
Back: $A \times \bigcup \mathscr{B} = \bigcup\, \{A \times X \mid X \in \mathscr{B}\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718069881759-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the specialization of identity $A \times \bigcap \mathscr{B} = \bigcap\, \{A \times X \mid X \in \mathscr{B}\}$?
|
||||
Back: $A \times (B \cap C) = (A \times B) \cap (A \times C)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718069881766-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the generalization of identity $A \times (B \cap C) = (A \times B) \cap (A \times C)$?
|
||||
Back: $A \times \bigcap \mathscr{B} = \bigcap\, \{A \times X \mid X \in \mathscr{B}\}$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718069881773-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the specialization of identity $A \times \bigcup \mathscr{B} = \bigcup\, \{A \times X \mid X \in \mathscr{B}\}$?
|
||||
Back: $A \times (B \cup C) = (A \times B) \cup (A \times C)$
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
<!--ID: 1718069881779-->
|
||||
END%%
|
||||
|
||||
### De Morgan's Laws
|
||||
|
||||
For any sets $A$, $B$, and $C$, $$\begin{align*} C - (A \cup B) & = (C - A) \cap (C - B) \\ C - (A \cap B) & = (C - A) \cup (C - B) \end{align*}$$
|
||||
|
@ -458,6 +602,18 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
|||
<!--ID: 1717073536985-->
|
||||
END%%
|
||||
|
||||
In addition,
|
||||
|
||||
* $A \subseteq B \Rightarrow A \times C \subseteq B \times C$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What monotonicity property does the Cartesian product satisfy?
|
||||
Back: $A \subseteq B \Rightarrow A \times C \subseteq B \times C$
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1718069881786-->
|
||||
END%%
|
||||
|
||||
### Antimonotonicity
|
||||
|
||||
Let $A$, $B$, and $C$ be arbitrary sets. Then
|
||||
|
|
|
@ -198,7 +198,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The C standard sets {1:lower bounds} on data type ranges, but does not set {1:upper bounds} (except with fixed-size types).
|
||||
{1:Lower} bounds are defined on data type's numeric ranges, but not {1:upper} (except for {2:fixed-size} types).
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1707493017244-->
|
||||
END%%
|
||||
|
|
|
@ -327,14 +327,6 @@ Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n
|
|||
<!--ID: 1708434662157-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What isomorphism shows finite sets have an equal number of even-sized subsets as odd-sized subsets?
|
||||
Back: The one-to-one relationship between subsets and bit strings.
|
||||
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
<!--ID: 1708434662160-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given finite set $A$, how many subsets of even cardinality does $A$ have?
|
||||
|
|
|
@ -44,7 +44,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
In a `git merge`, what changes are between `<<<<<<<` and `=======`?
|
||||
In a `git merge`, what changes are after `<<<<<<<` and before `=======`?
|
||||
Back: The changes present on the current branch.
|
||||
Reference: Scott Chacon, *Pro Git*, Second edition, The Expert’s Voice in Software Development (New York, NY: Apress, 2014).
|
||||
<!--ID: 1716804846990-->
|
||||
|
@ -52,7 +52,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
In a `git merge`, what changes are between `>>>>>>>` and `=======`?
|
||||
In a `git merge`, what changes are after `>>>>>>>` and before `=======`?
|
||||
Back: N/A.
|
||||
Reference: Scott Chacon, *Pro Git*, Second edition, The Expert’s Voice in Software Development (New York, NY: Apress, 2014).
|
||||
<!--ID: 1716804846993-->
|
||||
|
@ -60,7 +60,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
In a `git merge`, what changes are between `=======` and `>>>>>>>`?
|
||||
In a `git merge`, what changes are after `=======` and before `>>>>>>>`?
|
||||
Back: The changes present on the branch being merged into `HEAD`.
|
||||
Reference: Scott Chacon, *Pro Git*, Second edition, The Expert’s Voice in Software Development (New York, NY: Apress, 2014).
|
||||
<!--ID: 1716804846999-->
|
||||
|
@ -68,7 +68,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
In a `git merge`, what changes are between `=======` and `<<<<<<<`?
|
||||
In a `git merge`, what changes are after `=======` and before `<<<<<<<`?
|
||||
Back: N/A.
|
||||
Reference: Scott Chacon, *Pro Git*, Second edition, The Expert’s Voice in Software Development (New York, NY: Apress, 2014).
|
||||
<!--ID: 1716804846996-->
|
||||
|
|
|
@ -416,7 +416,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
How is "occurs in" recursively defined for application?
|
||||
Back: If $P$ occurs in $M$ or $N$, then $P$ occurs in $(MN)$.
|
||||
Back: $P$ occurs in $(MN)$ if $P$ occurs in $M$ or $P$ occurs in $N$.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1716743248122-->
|
||||
END%%
|
||||
|
@ -424,7 +424,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
How is "occurs in" recursively defined for abstraction?
|
||||
Back: If $P$ occurs in $M$ or $P$ is $x$, then $P$ occurs in $(\lambda x. M)$.
|
||||
Back: $P$ occurs in $(\lambda x. M)$ if $P$ occurs in $M$ or $P$ is $x$.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1716743248124-->
|
||||
END%%
|
||||
|
@ -618,7 +618,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
Which specific occurrences are bound in $\lambda x. x(\lambda y. yz)$?
|
||||
Back: Each $x$ and each $y$.
|
||||
Back: Both $x$s and both $y$s.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1716745016028-->
|
||||
END%%
|
||||
|
|
|
@ -51,9 +51,9 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $\langle x, y \rangle$ usually defined?
|
||||
How is $\langle x, y \rangle$ most commonly defined?
|
||||
Back: As $\{\{x\}, \{x, y\}\}$.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1717678753120-->
|
||||
END%%
|
||||
|
||||
|
@ -125,7 +125,7 @@ END%%
|
|||
Basic
|
||||
Why is the Cartesian product named the way it is?
|
||||
Back: It is named after René Descartes.
|
||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
<!--ID: 1717679397836-->
|
||||
END%%
|
||||
|
||||
|
@ -146,4 +146,5 @@ END%%
|
|||
|
||||
## Bibliography
|
||||
|
||||
* “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
|
||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
@ -215,8 +215,8 @@ END%%
|
|||
Basic
|
||||
Evaluate `int t = a + b` for `int` `a` and `b`. When is `CF` set?
|
||||
Back: When `(unsigned) t < (unsigned) a`.
|
||||
Tags: c17
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1717941416597-->
|
||||
END%%
|
||||
|
||||
|
@ -224,8 +224,8 @@ END%%
|
|||
Basic
|
||||
Evaluate `int t = a + b` for `int` `a` and `b`. When is `ZF` set?
|
||||
Back: When `t == 0`.
|
||||
Tags: c17
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1717941416601-->
|
||||
END%%
|
||||
|
||||
|
@ -233,8 +233,8 @@ END%%
|
|||
Basic
|
||||
Evaluate `int t = a + b` for `int` `a` and `b`. When is `SF` set?
|
||||
Back: When `t < 0`.
|
||||
Tags: c17
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1717941416605-->
|
||||
END%%
|
||||
|
||||
|
@ -242,8 +242,8 @@ END%%
|
|||
Basic
|
||||
Evaluate `int t = a + b` for `int` `a` and `b`. When is `OF` set?
|
||||
Back: When `(t <= 0 && a > 0 && b > 0) || (t >= 0 && a < 0 && b < 0)`.
|
||||
Tags: c17
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1717941416609-->
|
||||
END%%
|
||||
|
||||
|
|
Loading…
Reference in New Issue