An ordered pair of $x$ and $y$, denoted $\langle x, y \rangle$, is defined as: $\langle x, y \rangle = \{\{x\}, \{x, y\}\}$. We define the **first coordinate** of $\langle x, y \rangle$ to be $x$ and the **second coordinate** to be $y$.
%%ANKI
Basic
How is an ordered pair of $x$ and $y$ denoted?
Back: $\langle x, y \rangle$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753102-->
END%%
%%ANKI
Basic
What property must any satisfactory definition of $\langle x, y \rangle$ satisfy?
Back: $x$ and $y$, along with their order, are uniquely determined.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679524930-->
END%%
%%ANKI
Basic
Which of ordered pairs or sets is more general?
Back: Sets.
<!--ID: 1717678753108-->
END%%
%%ANKI
Basic
What biconditional is used to prove the well-definedness of $\langle x, y \rangle$?
Back: $(\langle x, y \rangle = \langle u, v \rangle) \Leftrightarrow (x = u \land y = v)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753111-->
END%%
%%ANKI
Cloze
{$\{1, 2\}$} is a set whereas {$\langle 1, 2 \rangle$} is an ordered pair.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
A **relation** $R$ is a set of ordered pairs. The **domain** of $R$ ($\mathop{\text{dom}}{R}$), the **range** of $R$ ($\mathop{\text{ran}}{R}$), and the **field** of $R$ ($\mathop{\text{fld}}{R}$) is defined as:
* $x \in \mathop{\text{dom}}{R} \Leftrightarrow \exists y, \langle x, y \rangle \in R$
The following is analagous to what logical expression of commuting quantifiers?$$\mathop{\text{dom}}\bigcup\mathscr{A} = \bigcup\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$$
The following is analagous to what logical expression of commuting quantifiers? $$\mathop{\text{dom}}\bigcap\mathscr{A} \subseteq \bigcap\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$$
Back: $\exists x, \forall y, P(x, y) \Rightarrow \forall y, \exists x, P(x, y)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739914-->
END%%
%%ANKI
Cloze
For any set $\mathscr{A}$, $\mathop{\text{ran}}\bigcup\mathscr{A}$ {$=$} $\bigcup\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739918-->
END%%
%%ANKI
Basic
The following is analagous to what predicate logical expression of commuting quantifiers? $$\mathop{\text{ran}}\bigcup\mathscr{A} = \bigcup\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$$
Back: $\exists x, \exists y, P(x, y) \Leftrightarrow \exists y, \exists x, P(x, y)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739922-->
END%%
%%ANKI
Cloze
For any set $\mathscr{A}$, $\mathop{\text{ran}}\bigcap\mathscr{A}$ {$\subseteq$} $\bigcap\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
The following is analagous to what logical expression of commuting quantifiers? $$\mathop{\text{ran}}\bigcap\mathscr{A} \subseteq \bigcap\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$$
A set $A$ is **single-valued** iff for each $x$ in $\mathop{\text{dom}}A$, there is only one $y$ such that $xAy$. A set $A$ is **single-rooted** iff for each $y \in \mathop{\text{ran}}A$, there is only one $x$ such that $xAy$.
%%ANKI
Basic
What does it mean for a set $A$ to be "single-valued"?
Back: For each $x \in \mathop{\text{dom}}A$, there exists a unique $y$ such that $xAy$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718427443355-->
END%%
%%ANKI
Basic
What does it mean for a set $A$ to be "single-rooted"?
We define ordered triples as $\langle x, y, z \rangle = \langle \langle x, y \rangle, z \rangle$. We define ordered quadruples as $\langle x_1, x_2, x_3, x_4 \rangle = \langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, x_4 \rangle$. This idea generalizes to $n$-tuples. As a special case, we define the $1$-tuple $\langle x \rangle = x$.
An **$n$-ary relation on $A$** is a set of ordered $n$-tuples with all **components** in $A$. Keep in mind though, a unary ($1$-ary) relation on $A$ is just a subset of $A$ and may not be a relation at all.
%%ANKI
Basic
Ordered triple $\langle x, y, z \rangle$ is "syntactic sugar" for what?
Back: $\langle \langle x, y \rangle, z \rangle$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620058-->
END%%
%%ANKI
Basic
Ordered quadruple $\langle x_1, x_2, x_3, x_4 \rangle$ is "syntactic sugar" for what?
How is reflexivity of relation $R$ on set $A$ defined in relational algebra?
Back: $I_A \subseteq R$
Reference: “Equivalence Relation,” in _Wikipedia_, July 21, 2024, [https://en.wikipedia.org/w/index.php?title=Equivalence_relation](https://en.wikipedia.org/w/index.php?title=Equivalence_relation&oldid=1235801091).
A relation $R$ is **antisymmetric** iff whenever $x \neq y$ and $xRy$, then $\neg yRx$.
%%ANKI
Basic
How is antisymmetry of relation $R$ defined in FOL?
Back: $\forall x, \forall y, x \neq y \land xRy \Rightarrow \neg yRx$
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
<!--ID: 1721909725683-->
END%%
%%ANKI
Basic
A relation $R$ on set $A$ that satisfies the following exhibits what property? $$\forall x, y \in A, xRy \land yRx \Rightarrow x = y$$
Back: Antisymmetry.
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
<!--ID: 1721909725693-->
END%%
%%ANKI
Basic
Can a nonempty relation be both reflexive and antisymmetric on the same set?
Back: Yes.
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
<!--ID: 1721909725700-->
END%%
%%ANKI
Basic
Can a nonempty relation be both symmetric and antisymmetric on the same set?
Back: Yes.
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
<!--ID: 1721909725703-->
END%%
%%ANKI
Basic
Can a nonempty relation be neither symmetric nor antisymmetric on the same set?
Back: Yes.
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
<!--ID: 1721909971804-->
END%%
%%ANKI
Basic
Which of reflexivity, symmetry, and/or antisymmetry does $\{\langle a, a \rangle, \langle b, b \rangle\}$ exhibit?
Back: All three.
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
<!--ID: 1721909725707-->
END%%
%%ANKI
Basic
Which of reflexivity, symmetry, and/or antisymmetry does $\{\langle a, a \rangle, \langle b, c \rangle\}$ exhibit?
Back: Antisymmetry.
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
<!--ID: 1721909725711-->
END%%
%%ANKI
Basic
Which of reflexivity, symmetry, and/or antisymmetry does $\{\langle a, a \rangle, \langle b, c \rangle, \langle c, b \rangle\}$ exhibit?
Back: Symmetry.
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
<!--ID: 1721909725715-->
END%%
%%ANKI
Basic
Which of reflexivity, symmetry, and/or antisymmetry does $\{\langle a, b \rangle, \langle b, c \rangle, \langle c, b \rangle\}$ exhibit?
Back: None of them.
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
<!--ID: 1721909971807-->
END%%
%%ANKI
Basic
If a nonempty relation isn't symmetric, is it antisymmetric?
Back: Not necessarily.
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
<!--ID: 1721911804446-->
END%%
%%ANKI
Basic
The term "antisymmetric" is used to describe what kind of mathematical object?
Back: Relations.
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
<!--ID: 1721912048138-->
END%%
### Asymmetry
A relation $R$ is **asymmetric** iff whenever $xRy$, then $\neg yRx$.
%%ANKI
Basic
How is antisymmetry of relation $R$ defined in FOL?
Back: $\forall x, \forall y, xRy \Rightarrow \neg yRx$
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
Back: The former only considers *distinct* pairs of elements.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
<!--ID: 1721910949017-->
END%%
%%ANKI
Basic
Are antisymmetric relations necessarily asymmetric?
Back: No.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
<!--ID: 1721910949023-->
END%%
%%ANKI
Basic
Are asymmetric relations necessarily antisymmetric?
Back: Yes.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
A relation is {asymmetric} if and only if it is both {irreflexive} and {antisymmetric}.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
<!--ID: 1721910949033-->
END%%
%%ANKI
Basic
Can a relation be both symmetric and asymmetric?
Back: Yes.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
END%%
%%ANKI
Basic
Can a nonempty relation be both symmetric and asymmetric?
Back: No.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
<!--ID: 1721910949042-->
END%%
%%ANKI
Basic
Can a nonempty relation be neither symmetric nor asymmetric?
Back: Yes.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
Can a nonempty relation be both reflexive and asymmetric on the same set?
Back: No.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
<!--ID: 1721910949047-->
END%%
%%ANKI
Basic
Which of reflexivity, symmetry, and/or asymmetry does $\{\langle a, a \rangle, \langle b, b \rangle\}$ exhibit?
Back: Reflexivity and symmetry.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
<!--ID: 1721910949051-->
END%%
%%ANKI
Basic
Which of reflexivity, symmetry, and/or asymmetry does $\{\langle a, a \rangle, \langle b, c \rangle\}$ exhibit?
Back: None of them.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
<!--ID: 1721910949055-->
END%%
%%ANKI
Basic
Which of reflexivity, symmetry, and/or asymmetry does $\{\langle a, b \rangle, \langle b, c \rangle\}$ exhibit?
Back: Asymmetry.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
<!--ID: 1721910949059-->
END%%
%%ANKI
Basic
A relation $R$ is asymmetric if and only if what other two properties of $R$ hold?
Back: $R$ is both irreflexive and antisymmetric.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
<!--ID: 1721911011861-->
END%%
%%ANKI
Basic
If a nonempty relation isn't symmetric, is it asymmetric?
Back: Not necessarily.
Reference: “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
<!--ID: 1721911804453-->
END%%
%%ANKI
Basic
The term "asymmetric" is used to describe what kind of mathematical object?
Back: Relations.
Reference: “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
A relation $R$ is **transitive** iff whenever $xRy$ and $yRz$, then $xRz$. In relational algebra, we define $R$ to be transitive iff $R \circ R \subseteq R$.
%%ANKI
Basic
How is transitivity of relation $R$ defined in FOL?
A binary relation $R$ on set $A$ is said to be **connected** if for any *distinct* $x, y \in A$, either $xRy$ or $yRx$. The relation is **strongly connected** if for *all* $x, y \in A$, either $xRy$ or $yRx$.
%%ANKI
Basic
How is connectivity of relation $R$ on set $A$ defined in FOL?
Back: $\forall x, y \in A, x \neq y \Rightarrow xRy \lor yRx$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1722735199645-->
END%%
%%ANKI
Basic
*Why* isn't $R = \{\langle a, a \rangle, \langle b, b \rangle\}$ connected on set $\{a, b\}$?
Back: Because neither $aRb$ nor $bRa$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1722735199650-->
END%%
%%ANKI
Basic
Which of reflexivity or connectivity is the more general concept?
Back: N/A.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1722735199658-->
END%%
%%ANKI
Basic
What members must be added to make $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle\}$ connected on $\{a, b, c\}$?
Back: N/A.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1722735199662-->
END%%
%%ANKI
Basic
How is strong connectivity of relation $R$ on set $A$ defined in FOL?
Back: $\forall x, y \in A, xRy \lor yRx$
Reference: “Connected Relation,” in _Wikipedia_, July 14, 2024, [https://en.wikipedia.org/w/index.php?title=Connected_relation](https://en.wikipedia.org/w/index.php?title=Connected_relation&oldid=1234415201).
<!--ID: 1722735199672-->
END%%
%%ANKI
Basic
*Why* isn't $R = \{\langle a, b \rangle\}$ strongly connected on set $\{a, b\}$?
Back: Because $\neg aRa$ and $\neg bRb$.
Reference: “Connected Relation,” in _Wikipedia_, July 14, 2024, [https://en.wikipedia.org/w/index.php?title=Connected_relation](https://en.wikipedia.org/w/index.php?title=Connected_relation&oldid=1234415201).
<!--ID: 1722735199683-->
END%%
%%ANKI
Basic
What members must be added to make $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle\}$ strongly connected on $\{a, b, c\}$?
Reference: “Connected Relation,” in _Wikipedia_, July 14, 2024, [https://en.wikipedia.org/w/index.php?title=Connected_relation](https://en.wikipedia.org/w/index.php?title=Connected_relation&oldid=1234415201).
<!--ID: 1722735199688-->
END%%
%%ANKI
Basic
Which of strong connectivity or reflexivity is the more general concept?
Back: Reflexivity.
Reference: “Connected Relation,” in _Wikipedia_, July 14, 2024, [https://en.wikipedia.org/w/index.php?title=Connected_relation](https://en.wikipedia.org/w/index.php?title=Connected_relation&oldid=1234415201).
<!--ID: 1722735199695-->
END%%
%%ANKI
Cloze
{1:Antisymmetry} is to {2:asymmetry} as {2:connectivity} is to {1:strong connectivity}.
Reference: “Connected Relation,” in _Wikipedia_, July 14, 2024, [https://en.wikipedia.org/w/index.php?title=Connected_relation](https://en.wikipedia.org/w/index.php?title=Connected_relation&oldid=1234415201).
<!--ID: 1722735199702-->
END%%
%%ANKI
Basic
Why might we say asymmetry is "strong antisymmetry"?
Reference: “Connected Relation,” in _Wikipedia_, July 14, 2024, [https://en.wikipedia.org/w/index.php?title=Connected_relation](https://en.wikipedia.org/w/index.php?title=Connected_relation&oldid=1234415201).
Reference: “Connected Relation,” in _Wikipedia_, July 14, 2024, [https://en.wikipedia.org/w/index.php?title=Connected_relation](https://en.wikipedia.org/w/index.php?title=Connected_relation&oldid=1234415201).
* “Antisymmetric Relation,” in _Wikipedia_, January 24, 2024, [https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation](https://en.wikipedia.org/w/index.php?title=Antisymmetric_relation&oldid=1198625107).
* “Asymmetric Relation,” in _Wikipedia_, February 21, 2024, [https://en.wikipedia.org/w/index.php?title=Asymmetric_relation](https://en.wikipedia.org/w/index.php?title=Asymmetric_relation&oldid=1209290822).
* “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
* “Connected Relation,” in _Wikipedia_, July 14, 2024, [https://en.wikipedia.org/w/index.php?title=Connected_relation](https://en.wikipedia.org/w/index.php?title=Connected_relation&oldid=1234415201).