bookshelf/Bookshelf/Enderton/Set/Chapter_6.lean

1239 lines
40 KiB
Plaintext
Raw Normal View History

import Bookshelf.Enderton.Set.Chapter_4
2023-09-14 15:00:28 +00:00
import Common.Logic.Basic
import Common.Nat.Basic
import Common.Set.Basic
import Common.Set.Equinumerous
import Common.Set.Function
import Common.Set.Intervals
import Mathlib.Data.Finset.Card
import Mathlib.Data.Set.Finite
/-! # Enderton.Set.Chapter_6
Cardinal Numbers and the Axiom of Choice
NOTE: We choose to use injectivity/surjectivity concepts found in
`Mathlib.Data.Set.Function` over those in `Mathlib.Init.Function` since the
former provides noncomputable utilities around obtaining inverse functions
(namely `Function.invFunOn`).
-/
namespace Enderton.Set.Chapter_6
/-- ### Theorem 6B
No set is equinumerous to its powerset.
-/
theorem theorem_6b (A : Set α)
: A ≉ 𝒫 A := by
/-
> Let `A` be an arbitrary set and `f: A → 𝒫 A`.
-/
rw [Set.not_equinumerous_def]
intro f hf
unfold Set.BijOn at hf
/-
> Define `φ = {a ∈ A | a ∉ f(a)}`.
-/
let φ := { a ∈ A | a ∉ f a }
/-
> Clearly `φ ∈ 𝒫 A`. Furthermore, for all `a ∈ A`, `φ ≠ f(a)` since `a ∈ φ` if
> and only if `a ∉ f(a)`. Thus `f` cannot be onto `𝒫 A`. Since `f` was
> arbitrarily chosen, there exists no one-to-one correspondence between `A` and
> `𝒫 A`. Since `A` was arbitrarily chosen, there is no set equinumerous to its
> powerset.
-/
suffices ∀ a ∈ A, f a ≠ φ by
have hφ := hf.right.right (show φ ∈ 𝒫 A by simp)
have ⟨a, ha⟩ := hφ
exact absurd ha.right (this a ha.left)
intro a ha hfa
by_cases h : a ∈ f a
· have h' := h
rw [hfa] at h
simp only [Set.mem_setOf_eq] at h
exact absurd h' h.right
· rw [Set.Subset.antisymm_iff] at hfa
have := hfa.right ⟨ha, h⟩
exact absurd this h
/-! ### Pigeonhole Principle -/
/--
A subset of a finite set of natural numbers has a max member.
-/
lemma subset_finite_max_nat {S' S : Set }
(hS : Set.Finite S) (hS' : Set.Nonempty S') (h : S' ⊆ S)
: ∃ m, m ∈ S' ∧ ∀ n, n ∈ S' → n ≤ m := by
have ⟨m, hm₁, hm₂⟩ :=
Set.Finite.exists_maximal_wrt id S' (Set.Finite.subset hS h) hS'
simp only [id_eq] at hm₂
refine ⟨m, hm₁, ?_⟩
intro n hn
match @trichotomous LT.lt _ m n with
| Or.inr (Or.inl r) => exact Nat.le_of_eq r.symm
| Or.inl r =>
have := hm₂ n hn (Nat.le_of_lt r)
exact Nat.le_of_eq this.symm
| Or.inr (Or.inr r) => exact Nat.le_of_lt r
/--
Auxiliary function to be proven by induction.
-/
lemma pigeonhole_principle_aux (n : )
: ∀ M, M ⊂ Set.Iio n →
∀ f : ,
Set.MapsTo f M (Set.Iio n) ∧ Set.InjOn f M →
¬ Set.SurjOn f M (Set.Iio n) := by
/-
> Let
>
> `S = {n ∈ ω | ∀ M ⊂ n, every one-to-one function f: M → n is not onto}`. (1)
>
> We show that (i) `0 ∈ S` and (ii) if `n ∈ S`, then so is `n⁺`. Afterward we
> prove (iii) the theorem statement.
-/
induction n with
/-
> #### (i)
> By definition, `0 = ∅`. Then `0` has no proper subsets. Hence `0 ∈ S`
> vacuously.
-/
| zero =>
intro _ hM
unfold Set.Iio at hM
simp only [Nat.zero_eq, not_lt_zero', Set.setOf_false] at hM
rw [Set.ssubset_empty_iff_false] at hM
exact False.elim hM
/-
> #### (ii)
> Suppose `n ∈ S` and `M ⊂ n⁺`. Furthermore, let `f: M → n⁺` be a one-to-one
> function.
-/
| succ n ih =>
intro M hM f ⟨hf_maps, hf_inj⟩ hf_surj
/-
> If `M = ∅`, it vacuously holds that `f` is not onto `n⁺`.
-/
by_cases hM' : M = ∅
· rw [hM', Set.SurjOn_emptyset_Iio_iff_eq_zero] at hf_surj
simp at hf_surj
/-
> Otherwise `M ≠ 0`. Because `M` is finite, the *Trichotomy Law for `ω`* implies
> the existence of a largest member `p ∈ M`. There are two cases to consider:
-/
by_cases h : ¬ ∃ t, t ∈ M ∧ f t = n
/-
> ##### Case 1
> `n ∉ ran f`.
> Then `f` is not onto `n⁺`.
-/
· have ⟨t, ht⟩ := hf_surj (show n ∈ _ by simp)
exact absurd ⟨t, ht⟩ h
/-
> ##### Case 2
> `n ∈ ran f`.
> Then there exists some `t ∈ M` such that `⟨t, n⟩ ∈ f`.
-/
have ⟨t, ht₁, ht₂⟩ := not_not.mp h
/-
> Define `f': M → n⁺` given by
>
> `f'(p) = f(t) = n`
> `f'(t) = f(p)`
> `f'(x) = f(x)` for all other `x`.
>
> That is, `f'` is a variant of `f` in which the largest element of its domain
> (i.e. `p`) corresponds to value `n`.
-/
-- `M ≠ ∅` so `∃ p, ∀ x ∈ M, p ≥ x`, i.e. a maximum member.
have ⟨p, hp₁, hp₂⟩ : ∃ p ∈ M, ∀ x, x ∈ M → p ≥ x := by
refine subset_finite_max_nat (show Set.Finite M from ?_) ?_ ?_
· show Set.Finite M
have := Set.finite_lt_nat (n + 1)
exact Set.Finite.subset this (subset_of_ssubset hM)
· show Set.Nonempty M
exact Set.nmem_singleton_empty.mp hM'
· show M ⊆ M
exact Eq.subset rfl
/-
> Next define `g = f' - {⟨p, n⟩}`. Then `g` is a function mapping `M - {p}` to
> `n`.
-/
let g := Set.Function.swap f p t
/-
> Since `f` is one-to-one, `f'` and `g` are also one-to-one.
-/
have hg_maps := Set.Function.swap_MapsTo_self hp₁ ht₁ hf_maps
have hg_inj := Set.Function.swap_InjOn_self hp₁ ht₁ hf_inj
/-
> Then *(1)* indicates `g` must not be onto `n`.
-/
let M' := M \ {p}
have hM' : M' ⊂ Set.Iio n := by
by_cases hc : p = n
· suffices Set.Iio (n + 1) \ {n} = Set.Iio n by
have h₁ := Set.diff_ssubset_diff_left hM hp₁
conv at h₁ => right; rw [hc]
rwa [← this]
ext x
apply Iff.intro
· intro hx₁
refine Or.elim (Nat.lt_or_eq_of_lt hx₁.left) (by simp) ?_
intro hx₂
rw [hx₂] at hx₁
simp at hx₁
· intro hx₁
exact ⟨Nat.lt_trans hx₁ (by simp), Nat.ne_of_lt hx₁⟩
have hp_lt_n : p < n := by
have := subset_of_ssubset hM
have hp' : p < n + 1 := this hp₁
exact Or.elim (Nat.lt_or_eq_of_lt hp') id (absurd · hc)
rw [Set.ssubset_def]
apply And.intro
· show ∀ x, x ∈ M' → x < n
intro x hx
simp only [Set.mem_diff, Set.mem_singleton_iff] at hx
calc x
_ ≤ p := hp₂ x hx.left
_ < n := hp_lt_n
· show ¬ ∀ x, x < n → x ∈ M'
by_contra np
have := np p hp_lt_n
simp at this
-- Consider `g = f' - {⟨p, n⟩}`. This restriction will allow us to use
-- the induction hypothesis to prove `g` isn't surjective.
have ng_surj : ¬ Set.SurjOn g M' (Set.Iio n) := by
refine ih _ hM' g ⟨?_, ?_⟩
· -- `Set.MapsTo g M' (Set.Iio n)`
intro x hx
have hx₁ : x ∈ M := Set.mem_of_mem_diff hx
apply Or.elim (Nat.lt_or_eq_of_lt $ hg_maps hx₁) id
intro hx₂
unfold Set.Function.swap at hx₂
by_cases hc₁ : x = p
· exact absurd hc₁ hx.right
· rw [if_neg hc₁] at hx₂
by_cases hc₂ : x = t
· rw [if_pos hc₂, ← ht₂] at hx₂
have := hf_inj hp₁ ht₁ hx₂
rw [← hc₂] at this
exact absurd this.symm hc₁
· rw [if_neg hc₂, ← ht₂] at hx₂
have := hf_inj hx₁ ht₁ hx₂
exact absurd this hc₂
· -- `Set.InjOn g M'`
intro x₁ hx₁ x₂ hx₂ hg
have hx₁' : x₁ ∈ M := (Set.diff_subset M {p}) hx₁
have hx₂' : x₂ ∈ M := (Set.diff_subset M {p}) hx₂
exact hg_inj hx₁' hx₂' hg
/-
> That is, there exists some `a ∈ n` such that `a ∉ ran g`.
-/
have ⟨a, ha₁, ha₂⟩ : ∃ a, a < n ∧ a ∉ g '' M' := by
unfold Set.SurjOn at ng_surj
rw [Set.subset_def] at ng_surj
simp only [
Set.mem_Iio,
Set.mem_image,
not_forall,
not_exists,
not_and,
exists_prop
] at ng_surj
unfold Set.image
simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and]
exact ng_surj
/-
> By the *Trichotomy Law for `ω`*, `a ≠ n`. Therefore `a ∉ ran f'`.
> `ran f' = ran f` meaning `a ∉ ran f`. Because `a ∈ n ∈ n⁺`, *Theorem 4F*
> implies `a ∈ n⁺`. Hence `f` is not onto `n⁺`.
-/
refine absurd (hf_surj $ calc a
_ < n := ha₁
_ < n + 1 := by simp) (show ↑a ∉ f '' M from ?_)
suffices g '' M = f '' M by
rw [← this]
show a ∉ g '' M
unfold Set.image at ha₂ ⊢
simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and] at ha₂ ⊢
intro x hx
by_cases hxp : x = p
· unfold Set.Function.swap
rw [if_pos hxp, ht₂]
exact (Nat.ne_of_lt ha₁).symm
· refine ha₂ x ?_
exact Set.mem_diff_of_mem hx hxp
ext x
dsimp only
unfold Set.Function.swap
simp only [Set.mem_image, Set.mem_Iio]
apply Iff.intro
· intro ⟨y, hy₁, hy₂⟩
by_cases hc₁ : y = p
· rw [if_pos hc₁, ht₂] at hy₂
rw [hy₂] at ht₂
exact ⟨t, ht₁, ht₂⟩
· rw [if_neg hc₁] at hy₂
by_cases hc₂ : y = t
· rw [if_pos hc₂] at hy₂
exact ⟨p, hp₁, hy₂⟩
· rw [if_neg hc₂] at hy₂
exact ⟨y, hy₁, hy₂⟩
· intro ⟨y, hy₁, hy₂⟩
by_cases hc₁ : y = p
· refine ⟨t, ht₁, ?_⟩
by_cases hc₂ : y = t
· rw [hc₂, ht₂] at hy₂
rw [← hc₁, ← hc₂]
2023-09-14 15:00:28 +00:00
simp only [ite_self, ite_true]
rwa [hc₂, ht₂]
· rw [hc₁, ← Ne.def] at hc₂
rwa [if_neg hc₂.symm, if_pos rfl, ← hc₁]
· by_cases hc₂ : y = t
· refine ⟨p, hp₁, ?_⟩
simp only [ite_self, ite_true]
rwa [hc₂] at hy₂
· refine ⟨y, hy₁, ?_⟩
rwa [if_neg hc₁, if_neg hc₂]
/-
> ##### Subconclusion
> The foregoing cases are exhaustive. Hence `n⁺ ∈ S`.
>
> #### (iii)
> By *(i)* and *(ii)*, `S` is an inductive set. By *Theorem 4B*, `S = ω`. Thus
> for all natural numbers `n`, there is no one-to-one correspondence between `n`
> and a proper subset of `n`. In other words, no natural number is equinumerous
> to a proper subset of itself.
-/
/--
No natural number is equinumerous to a proper subset of itself.
-/
theorem pigeonhole_principle {n : }
: ∀ {M}, M ⊂ Set.Iio n → M ≉ Set.Iio n := by
intro M hM nM
have ⟨f, hf⟩ := nM
have := pigeonhole_principle_aux n M hM f ⟨hf.left, hf.right.left⟩
exact absurd hf.right.right this
/-- ### Corollary 6C
No finite set is equinumerous to a proper subset of itself.
-/
theorem corollary_6c [DecidableEq α] [Nonempty α]
{S S' : Set α} (hS : Set.Finite S) (h : S' ⊂ S)
: S ≉ S' := by
/-
> Let `S` be a finite set and `S'` be a proper subset of `S`. Then there exists
> some set `T`, disjoint from `S'`, such that `S' T = S`. By definition of a
> finite set, `S` is equinumerous to a natural number `n`.
-/
let T := S \ S'
have hT : S = S' (S \ S') := by
simp only [Set.union_diff_self]
exact (Set.left_subset_union_eq_self (subset_of_ssubset h)).symm
/-
> By *Theorem 6A*, `S' T ≈ S` which, by the same theorem, implies
> `S' T ≈ n`.
-/
have hF := Set.equinumerous_refl S
conv at hF => arg 1; rw [hT]
have ⟨n, hG⟩ := Set.finite_iff_equinumerous_nat.mp hS
/-
> Let `f` be a one-to-one correspondence between `S' T` and `n`.
-/
have ⟨f, hf⟩ := Set.equinumerous_trans hF hG
/-
> Then `f ↾ S'` is a one-to-one correspondence between `S'` and a proper subset
> of `n`.
-/
let R := (Set.Iio n) \ (f '' T)
have hR : Set.BijOn f S' R := by
refine ⟨?_, ?_, ?_⟩
· -- `Set.MapsTo H S' R`
intro x hx
refine ⟨hf.left $ Set.mem_union_left T hx, ?_⟩
unfold Set.image
by_contra nx
simp only [Finset.mem_coe, Set.mem_setOf_eq] at nx
have ⟨a, ha₁, ha₂⟩ := nx
have hc₁ : a ∈ S' T := Set.mem_union_right S' ha₁
have hc₂ : x ∈ S' T := Set.mem_union_left T hx
rw [hf.right.left hc₁ hc₂ ha₂] at ha₁
have hx₁ : {x} ⊆ S' := Set.singleton_subset_iff.mpr hx
have hx₂ : {x} ⊆ T := Set.singleton_subset_iff.mpr ha₁
have hx₃ := Set.disjoint_sdiff_right hx₁ hx₂
simp only [
Set.bot_eq_empty,
Set.le_eq_subset,
Set.singleton_subset_iff,
Set.mem_empty_iff_false
] at hx₃
· -- `Set.InjOn H S'`
intro x₁ hx₁ x₂ hx₂ h
have hc₁ : x₁ ∈ S' T := Set.mem_union_left T hx₁
have hc₂ : x₂ ∈ S' T := Set.mem_union_left T hx₂
exact hf.right.left hc₁ hc₂ h
· -- `Set.SurjOn H S' R`
show ∀ r, r ∈ R → r ∈ f '' S'
intro r hr
unfold Set.image
simp only [Set.mem_setOf_eq]
dsimp only at hr
have := hf.right.right hr.left
simp only [Set.mem_image, Set.mem_union] at this
have ⟨x, hx⟩ := this
apply Or.elim hx.left
· intro hx'
exact ⟨x, hx', hx.right⟩
· intro hx'
refine absurd ?_ hr.right
rw [← hx.right]
simp only [Set.mem_image, Finset.mem_coe]
exact ⟨x, hx', rfl⟩
/-
> By the *Pigeonhole Principle*, `n` is not equinumerous to any proper subset of
> `n`. Therefore *Theorem 6A* implies `S'` cannot be equinumerous to `n`, which,
> by the same theorem, implies `S'` cannot be equinumerous to `S`. Hence no
> finite set is equinumerous to a proper subset of itself.
-/
intro hf'
have hf₁ : S ≈ R := Set.equinumerous_trans hf' ⟨f, hR⟩
have hf₂ : R ≈ Set.Iio n := by
have ⟨k, hk⟩ := Set.equinumerous_symm hf₁
exact Set.equinumerous_trans ⟨k, hk⟩ hG
refine absurd hf₂ (pigeonhole_principle ?_)
show R ⊂ Set.Iio n
apply And.intro
· show ∀ r, r ∈ R → r ∈ Set.Iio n
intro _ hr
exact hr.left
· show ¬ ∀ r, r ∈ Set.Iio n → r ∈ R
intro nr
have ⟨t, ht₁⟩ : Set.Nonempty T := Set.diff_ssubset_nonempty h
have ht₂ : f t ∈ Set.Iio n := hf.left (Set.mem_union_right S' ht₁)
have ht₃ : f t ∈ R := nr (f t) ht₂
exact absurd ⟨t, ht₁, rfl⟩ ht₃.right
/-- ### Corollary 6D (a)
Any set equinumerous to a proper subset of itself is infinite.
-/
theorem corollary_6d_a [DecidableEq α] [Nonempty α]
{S S' : Set α} (hS : S' ⊂ S) (hf : S ≈ S')
: Set.Infinite S := by
/-
> Let `S` be a set equinumerous to proper subset `S'` of itself. Then `S` cannot
> be a finite set by *Corollary 6C*. By definition, `S` is an infinite set.
-/
by_contra nS
simp only [Set.not_infinite] at nS
exact absurd hf (corollary_6c nS hS)
/-- ### Corollary 6D (b)
The set `ω` is infinite.
-/
theorem corollary_6d_b
: Set.Infinite (@Set.univ ) := by
/-
> Consider set `S = {n ∈ ω | n is even}`. We prove that (i) `S` is equinumerous
> to `ω` and (ii) that `ω` is infinite.
-/
let S : Set := { 2 * n | n ∈ @Set.univ }
let f x := 2 * x
/-
> #### (i)
> Define `f : ω → S` given by `f(n) = 2 ⬝ n`. Notice `f` is well-defined by the
> definition of an even natural number, introduced in *Exercise 4.14*. We first
> show `f` is one-to-one and then that `f` is onto.
-/
have : Set.BijOn f (@Set.univ ) S := by
refine ⟨by simp, ?_, ?_⟩
/-
> Suppose `f(n₁) = f(n₁) = 2 ⬝ n₁`. We must prove that `n₁ = n₂`.
-/
· -- `Set.InjOn f Set.univ`
intro n₁ _ n₂ _ hf
/-
> By the *Trichotomy Law for `ω`*, exactly one of the following may occur:
> `n₁ = n₂`, `n₁ < n₂`, or `n₂ < n₁`. If `n₁ < n₂`, then *Theorem 4N* implies
> `n₁ ⬝ 2 < n₂ ⬝ 2`. *Theorem 4K-5* then indicates `2 ⬝ n₁ < 2 ⬝ n₂`, a
> contradiction to `2 ⬝ n₁ = 2 ⬝ n₂`. A parallel argument holds for when
> `n₂ < n₁`. Thus `n₁ = n₂`.
-/
match @trichotomous LT.lt _ n₁ n₂ with
| Or.inr (Or.inl r) => exact r
| Or.inl r =>
have := (Chapter_4.theorem_4n_ii n₁ n₂ 1).mp r
conv at this => left; rw [mul_comm]
conv at this => right; rw [mul_comm]
exact absurd hf (Nat.ne_of_lt this)
| Or.inr (Or.inr r) =>
have := (Chapter_4.theorem_4n_ii n₂ n₁ 1).mp r
conv at this => left; rw [mul_comm]
conv at this => right; rw [mul_comm]
exact absurd hf.symm (Nat.ne_of_lt this)
/-
> Next, let `m ∈ S`. That is, `m` is an even number. By definition, there exists
> some `n ∈ ω` such that `m = 2 ⬝ n`. Thus `f(n) = m`.
-/
· -- `Set.SurjOn f Set.univ S`
show ∀ x, x ∈ S → x ∈ f '' Set.univ
intro x hx
unfold Set.image
simp only [Set.mem_univ, true_and, Set.mem_setOf_eq] at hx ⊢
exact hx
/-
> By *(i)*, `ω` is equinumerous to a subset of itself. By *Corollary 6D (a)*,
> `ω` is infinite.
-/
refine corollary_6d_a ?_ ⟨f, this⟩
rw [Set.ssubset_def]
apply And.intro
· simp
· show ¬ ∀ x, x ∈ Set.univ → x ∈ S
simp only [
Set.mem_univ,
true_and,
Set.mem_setOf_eq,
forall_true_left,
not_forall,
not_exists
]
refine ⟨1, ?_⟩
intro x nx
simp only [mul_eq_one, false_and] at nx
/-- ### Corollary 6E
Any finite set is equinumerous to a unique natural number.
-/
theorem corollary_6e [Nonempty α] (S : Set α) (hS : Set.Finite S)
: ∃! n : , S ≈ Set.Iio n := by
/-
> Let `S` be a finite set. By definition `S` is equinumerous to a natural number
> `n`.
-/
have ⟨n, hf⟩ := Set.finite_iff_equinumerous_nat.mp hS
refine ⟨n, hf, ?_⟩
/-
> Suppose `S` is equinumerous to another natural number `m`.
-/
intro m hg
/-
> By the *Trichotomy Law for `ω`*, exactly one of three situations is possible:
> `n = m`, `n < m`, or `m < n`.
-/
match @trichotomous LT.lt _ m n with
/-
> If `n < m`, then `m ≈ S` and `S ≈ n`. By *Theorem 6A*, it follows `m ≈ n`. But
> the *Pigeonhole Principle* indicates no natural number is equinumerous to a
> proper subset of itself, a contradiction.
-/
| Or.inr (Or.inr r) =>
have hh := Set.equinumerous_symm hf
have hk := Set.equinumerous_trans hh hg
have hnm : Set.Iio n ⊂ Set.Iio m := Set.Iio_nat_lt_ssubset r
exact absurd hk (pigeonhole_principle hnm)
/-
> If `m < n`, a parallel argument applies.
-/
| Or.inl r =>
have hh := Set.equinumerous_symm hg
have hk := Set.equinumerous_trans hh hf
have hmn : Set.Iio m ⊂ Set.Iio n := Set.Iio_nat_lt_ssubset r
exact absurd hk (pigeonhole_principle hmn)
/-
> Hence `n = m`, proving every finite set is equinumerous to a unique natural
> number.
-/
| Or.inr (Or.inl r) => exact r
/-- ### Lemma 6F
If `C` is a proper subset of a natural number `n`, then `C ≈ m` for some `m`
less than `n`.
-/
lemma lemma_6f {n : }
: ∀ {C}, C ⊂ Set.Iio n → ∃ m, m < n ∧ C ≈ Set.Iio m := by
/-
> Let
>
> `S = {n ∈ ω | ∀C ⊂ n, ∃m < n such that C ≈ m}`. (2)
>
> We prove that (i) `0 ∈ S` and (ii) if `n ∈ S` then `n⁺ ∈ S`. Afterward we
> prove (iii) the lemma statement.
-/
induction n with
/-
> #### (i)
> By definition, `0 = ∅`. Thus `0` has no proper subsets. Hence `0 ∈ S`
> vacuously.
-/
| zero =>
intro C hC
unfold Set.Iio at hC
simp only [Nat.zero_eq, not_lt_zero', Set.setOf_false] at hC
rw [Set.ssubset_empty_iff_false] at hC
exact False.elim hC
/-
> #### (ii)
> Suppose `n ∈ S` and consider `n⁺`. By definition of the successor,
> `n⁺ = n {n}`. There are two cases to consider:
-/
| succ n ih =>
/-
> Let `C` be an arbitrary, proper subset of `n⁺`.
-/
intro C hC
-- A useful theorem we use in a couple of places.
have h_subset_equinumerous
: ∀ S, S ⊆ Set.Iio n →
∃ m, m < n + 1 ∧ S ≈ Set.Iio m := by
intro S hS
rw [subset_iff_ssubset_or_eq] at hS
apply Or.elim hS
· -- `S ⊂ Set.Iio n`
intro h
have ⟨m, hm⟩ := ih h
exact ⟨m, calc m
_ < n := hm.left
_ < n + 1 := by simp, hm.right⟩
· -- `S = Set.Iio n`
intro h
exact ⟨n, by simp, Set.eq_imp_equinumerous h⟩
/-
> There are two cases to consider:
-/
by_cases hn : n ∉ C
/-
> ##### Case 1
> Suppose `n ∉ C`. Then `C ⊆ n`. If `C` is a proper subset of `n`, *(2)* implies
> `C` is equinumerous to some `m < n < n⁺`. If `C = n`, then *Theorem 6A*
> implies `C` is equinumerous to `n < n⁺`.
-/
· refine h_subset_equinumerous C ?_
show ∀ x, x ∈ C → x ∈ Set.Iio n
intro x hx
apply Or.elim (Nat.lt_or_eq_of_lt (subset_of_ssubset hC hx))
· exact id
· intro hx₁
rw [hx₁] at hx
exact absurd hx hn
/-
> ##### Case 2
> Suppose `n ∈ C`. Since `C` is a proper subset of `n⁺`, the set `n⁺ - C` is
> nonempty. By the *Well Ordering of `ω`*, `n⁺ - C` has a least element, say
> `p` (which does not equal `n`).
-/
simp only [not_not] at hn
have hC₁ : Set.Nonempty (Set.Iio (n + 1) \ C) := by
rw [Set.ssubset_def] at hC
have : ¬ ∀ x, x ∈ Set.Iio (n + 1) → x ∈ C := hC.right
simp only [Set.mem_Iio, not_forall, exists_prop] at this
exact this
-- `p` is the least element of `n⁺ - C`.
have ⟨p, hp⟩ := Chapter_4.well_ordering_nat hC₁
/-
> Consider now set `C' = (C - {n}) {p}`. By construction, `C' ⊆ n`.
-/
let C' := (C \ {n}) {p}
have hC'₁ : C' ⊆ Set.Iio n := by
show ∀ x, x ∈ C' → x ∈ Set.Iio n
intro x hx
match @trichotomous LT.lt _ x n with
| Or.inl r => exact r
| Or.inr (Or.inl r) =>
rw [r] at hx
apply Or.elim hx
· intro nx
simp at nx
· intro nx
simp only [Set.mem_singleton_iff] at nx
rw [nx] at hn
exact absurd hn hp.left.right
| Or.inr (Or.inr r) =>
apply Or.elim hx
· intro ⟨h₁, h₂⟩
have h₃ := subset_of_ssubset hC h₁
simp only [Set.mem_singleton_iff, Set.mem_Iio] at h₂ h₃
exact Or.elim (Nat.lt_or_eq_of_lt h₃) id (absurd · h₂)
· intro h
simp only [Set.mem_singleton_iff] at h
have := hp.left.left
rw [← h] at this
exact Or.elim (Nat.lt_or_eq_of_lt this)
id (absurd · (Nat.ne_of_lt r).symm)
/-
> As seen in *Case 1*, `C'` is equinumerous to some `m < n⁺`.
-/
have ⟨m, hm₁, hm₂⟩ := h_subset_equinumerous C' hC'₁
/-
> It suffices to show there exists a one-to-one correspondence between `C'` and
> `C`, since then *Theorem 6A* implies `C` is equinumerous to `m` as well.
-/
suffices C' ≈ C from
⟨m, hm₁, Set.equinumerous_trans (Set.equinumerous_symm this) hm₂⟩
/-
> Function `f : C' → C` given by
>
> `f(x) = if x = p then n else x`
>
> is trivially one-to-one and onto as expected.
-/
let f x := if x = p then n else x
refine ⟨f, ?_, ?_, ?_⟩
· -- `Set.MapsTo f C' C`
intro x hx
dsimp only
by_cases hxp : x = p
· rw [if_pos hxp]
exact hn
· rw [if_neg hxp]
apply Or.elim hx
· exact fun x => x.left
· intro hx₁
simp only [Set.mem_singleton_iff] at hx₁
exact absurd hx₁ hxp
· -- `Set.InjOn f C'`
intro x₁ hx₁ x₂ hx₂ hf
dsimp only at hf
by_cases hx₁p : x₁ = p
· by_cases hx₂p : x₂ = p
· rw [hx₁p, hx₂p]
· rw [if_pos hx₁p, if_neg hx₂p] at hf
apply Or.elim hx₂
· intro nx
exact absurd hf.symm nx.right
· intro nx
simp only [Set.mem_singleton_iff] at nx
exact absurd nx hx₂p
· by_cases hx₂p : x₂ = p
· rw [if_neg hx₁p, if_pos hx₂p] at hf
apply Or.elim hx₁
· intro nx
exact absurd hf nx.right
· intro nx
simp only [Set.mem_singleton_iff] at nx
exact absurd nx hx₁p
· rwa [if_neg hx₁p, if_neg hx₂p] at hf
· -- `Set.SurjOn f C' C`
show ∀ x, x ∈ C → x ∈ f '' C'
intro x hx
simp only [
Set.union_singleton,
Set.mem_diff,
Set.mem_singleton_iff,
Set.mem_image,
Set.mem_insert_iff,
exists_eq_or_imp,
ite_true
]
by_cases nx₁ : x = n
· left
exact nx₁.symm
· right
by_cases nx₂ : x = p
· have := hp.left.right
rw [← nx₂] at this
exact absurd hx this
· exact ⟨x, ⟨hx, nx₁⟩, by rwa [if_neg]⟩
/-
> #### (iii)
> By *(i)* and *(ii)*, `S` is an inductive set. By *Theorem 4B*, `S = ω`.
> Therefore, for every proper subset `C` of a natural number `n`, there exists
> some `m < n` such that `C ≈ n`.
-/
/-- ### Corollary 6G
Any subset of a finite set is finite.
-/
theorem corollary_6g {S S' : Set α} (hS : Set.Finite S) (hS' : S' ⊆ S)
: Set.Finite S' := by
rw [subset_iff_ssubset_or_eq] at hS'
apply Or.elim hS'
· intro h
rw [Set.finite_iff_equinumerous_nat] at hS
have ⟨n, F, hF⟩ := hS
-- Mirrors logic found in `corollary_6c`.
let T := S \ S'
let R := (Set.Iio n) \ (F '' T)
have hR : R ⊂ Set.Iio n := by
rw [Set.ssubset_def]
apply And.intro
· show ∀ x, x ∈ R → x ∈ Set.Iio n
intro _ hx
exact hx.left
· show ¬ ∀ x, x ∈ Set.Iio n → x ∈ R
intro nr
have ⟨t, ht₁⟩ : Set.Nonempty T := Set.diff_ssubset_nonempty h
have ht₂ : F t ∈ Set.Iio n := hF.left ht₁.left
have ht₃ : F t ∈ R := nr (F t) ht₂
exact absurd ⟨t, ht₁, rfl⟩ ht₃.right
suffices Set.BijOn F S' R by
have ⟨m, hm⟩ := lemma_6f hR
have := Set.equinumerous_trans ⟨F, this⟩ hm.right
exact Set.finite_iff_equinumerous_nat.mpr ⟨m, this⟩
refine ⟨?_, ?_, ?_⟩
· -- `Set.MapsTo f S' R`
intro x hx
dsimp only
simp only [Set.mem_diff, Set.mem_Iio, Set.mem_image, not_exists, not_and]
apply And.intro
· exact hF.left (subset_of_ssubset h hx)
· intro y hy
by_contra nf
have := hF.right.left (subset_of_ssubset h hx) hy.left nf.symm
rw [this] at hx
exact absurd hx hy.right
· -- `Set.InjOn f S'`
intro x₁ hx₁ x₂ hx₂ hf
have h₁ : x₁ ∈ S := subset_of_ssubset h hx₁
have h₂ : x₂ ∈ S := subset_of_ssubset h hx₂
exact hF.right.left h₁ h₂ hf
· -- `Set.SurjOn f S' R`
show ∀ x, x ∈ R → x ∈ F '' S'
intro x hx
have h₁ := hF.right.right
unfold Set.SurjOn at h₁
rw [Set.subset_def] at h₁
have ⟨y, hy⟩ := h₁ x hx.left
refine ⟨y, ?_, hy.right⟩
rw [← hy.right] at hx
simp only [Set.mem_image, Set.mem_diff, not_exists, not_and] at hx
by_contra ny
exact (hx.right y ⟨hy.left, ny⟩) rfl
· intro h
rwa [h]
/-- ### Subset Size
Let `A` be a finite set and `B ⊂ A`. Then there exist natural numbers `m, n ∈ ω`
such that `B ≈ m`, `A ≈ n`, and `m ≤ n`.
-/
lemma subset_size [DecidableEq α] [Nonempty α] {A B : Set α}
(hBA : B ⊆ A) (hA : Set.Finite A)
: ∃ m n : , B ≈ Set.Iio m ∧ A ≈ Set.Iio n ∧ m ≤ n := by
have ⟨n, hn⟩ := Set.finite_iff_equinumerous_nat.mp hA
have ⟨m, hm⟩ := Set.finite_iff_equinumerous_nat.mp (corollary_6g hA hBA)
refine ⟨m, n, hm, hn, ?_⟩
suffices ¬ m > n by
match @trichotomous LT.lt _ m n with
| Or.inr (Or.inl hr) => -- m = n
rw [hr]
| Or.inr (Or.inr hr) => -- m > n
exact absurd hr this
| Or.inl hr => -- m < n
exact Nat.le_of_lt hr
by_contra nr
have ⟨f, hf⟩ := Set.equinumerous_symm hm
have ⟨g, hg⟩ := hn
let h x := f (g x)
have hh : Set.BijOn h A (h '' A) := by
refine ⟨?_, ?_, Eq.subset rfl⟩
· -- `Set.MapsTo h A (ran h)`
intro x hx
simp only [Set.mem_image]
exact ⟨x, hx, rfl⟩
· -- `Set.InjOn h A`
refine Set.InjOn.comp hf.right.left hg.right.left ?_
intro x hx
exact Nat.lt_trans (hg.left hx) nr
have : h '' A ⊂ A := by
rw [Set.ssubset_def]
apply And.intro
· show ∀ x, x ∈ h '' A → x ∈ A
intro x hx
have ⟨y, hy₁, hy₂⟩ := hx
have h₁ : g y ∈ Set.Iio n := hg.left hy₁
have h₂ : f (g y) ∈ B := hf.left (Nat.lt_trans h₁ nr)
have h₃ : x ∈ B := by rwa [← hy₂]
exact hBA h₃
· rw [Set.subset_def]
simp only [Set.mem_image, not_forall, not_exists, not_and, exists_prop]
refine ⟨f n, hBA (hf.left nr), ?_⟩
intro x hx
by_contra nh
have h₁ : g x < n := hg.left hx
have h₂ : g x ∈ Set.Iio m := Nat.lt_trans h₁ nr
rw [hf.right.left h₂ nr nh] at h₁
simp at h₁
exact absurd ⟨h, hh⟩ (corollary_6c hA this)
/-- ### Finite Domain and Range Size
Let `A` and `B` be finite sets and `f : A → B` be a function. Then there exist
natural numbers `m, n ∈ ω` such that `dom f ≈ m`, `ran f ≈ n`, and `m ≥ n`.
-/
theorem finite_dom_ran_size [Nonempty α] {A B : Set α}
(hA : Set.Finite A) (hB : Set.Finite B) (hf : Set.MapsTo f A B)
: ∃ m n : , A ≈ Set.Iio m ∧ f '' A ≈ Set.Iio n ∧ m ≥ n := by
have ⟨m, hm⟩ := Set.finite_iff_equinumerous_nat.mp hA
have ⟨p, hp⟩ := Set.finite_iff_equinumerous_nat.mp hB
have ⟨g, hg⟩ := Set.equinumerous_symm hm
let A_y y := { x ∈ Set.Iio m | f (g x) = y }
have hA₁ : ∀ y ∈ B, A_y y ≈ f ⁻¹' {y} := by
sorry
have hA₂ : ∀ y ∈ B, Set.Nonempty (A_y y) := by
sorry
have hA₃ : ∀ y ∈ B, ∃ q : , ∀ p ∈ A_y y, q ≤ p := by
sorry
let C := { q | ∃ y ∈ B, ∀ p ∈ A_y y, q ≤ p }
let h x := f (g x)
have hh : C ≈ f '' A := by
sorry
sorry
/-- ### Set Difference Size
Let `A ≈ m` for some natural number `m` and `B ⊆ A`. Then there exists some
`n ∈ ω` such that `B ≈ n` and `A - B ≈ m - n`.
-/
lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
: ∀ A : Set α, A ≈ Set.Iio m →
∀ B, B ⊆ A →
∃ n : , n ≤ m ∧ B ≈ Set.Iio n ∧ A \ B ≈ (Set.Iio m) \ (Set.Iio n) := by
induction m with
| zero =>
intro A hA B hB
refine ⟨0, ?_⟩
simp only [
Nat.zero_eq,
sdiff_self,
Set.bot_eq_empty,
Set.equinumerous_zero_iff_emptyset
] at hA ⊢
have hB' : B = ∅ := Set.subset_eq_empty hB hA
have : A \ B = ∅ := by
rw [hB']
simp only [Set.diff_empty]
exact hA
rw [this]
refine ⟨trivial, hB', Set.equinumerous_emptyset_emptyset⟩
| succ m ih =>
intro A ⟨f, hf⟩ B hB
-- Since `f` is one-to-one and onto, there exists a unique value `a ∈ A`
-- such that `f(a) = m`.
have hfa := hf.right.right
unfold Set.SurjOn at hfa
have ⟨a, ha₁, ha₂⟩ := (Set.subset_def ▸ hfa) m (by simp)
-- `f` is a one-to-one correspondence between `A - {a}` and `m`.
have hBA : B \ {a} ⊆ A \ {a} := Set.diff_subset_diff_left hB
have hfBA : Set.BijOn f (A \ {a}) (Set.Iio m) := by
refine ⟨?_, ?_, ?_⟩
· intro x hx
have := hf.left hx.left
simp only [Set.mem_Iio, gt_iff_lt] at this ⊢
apply Or.elim (Nat.lt_or_eq_of_lt this)
· simp
· intro h
rw [← ha₂] at h
exact absurd (hf.right.left hx.left ha₁ h) hx.right
· intro x₁ hx₁ x₂ hx₂ h
exact hf.right.left hx₁.left hx₂.left h
· have := hf.right.right
unfold Set.SurjOn Set.image at this ⊢
rw [Set.subset_def] at this ⊢
simp only [
Set.mem_Iio,
Set.mem_diff,
Set.mem_singleton_iff,
Set.mem_setOf_eq
] at this ⊢
intro x hx
have ⟨b, hb⟩ := this x (Nat.lt.step hx)
refine ⟨b, ⟨hb.left, ?_⟩, hb.right⟩
by_contra nb
rw [← nb, hb.right] at ha₂
exact absurd ha₂ (Nat.ne_of_lt hx)
-- `(A - {a}) - (B - {a}) ≈ m - n`
have ⟨n, hn₁, hn₂, hn₃⟩ := ih (A \ {a}) ⟨f, hfBA⟩ (B \ {a}) hBA
by_cases hc : a ∈ B
· refine ⟨n.succ, ?_, ?_, ?_⟩
· exact Nat.succ_le_succ hn₁
· -- `B ≈ Set.Iio n.succ`
have ⟨g, hg⟩ := hn₂
let g' x := if x = a then n else g x
refine ⟨g', ⟨?_, ?_, ?_⟩⟩
· -- `Set.MapsTo g' B (Set.Iio n.succ)`
intro x hx
dsimp only
by_cases hx' : x = a
· rw [if_pos hx']
simp
· rw [if_neg hx']
calc g x
_ < n := hg.left ⟨hx, hx'⟩
_ < n + 1 := by simp
· -- `Set.InjOn g' B`
intro x₁ hx₁ x₂ hx₂ h
dsimp only at h
by_cases hc₁ : x₁ = a <;> by_cases hc₂ : x₂ = a
· rw [hc₁, hc₂]
· rw [if_pos hc₁, if_neg hc₂] at h
exact absurd h.symm (Nat.ne_of_lt $ hg.left ⟨hx₂, hc₂⟩)
· rw [if_neg hc₁, if_pos hc₂] at h
exact absurd h (Nat.ne_of_lt $ hg.left ⟨hx₁, hc₁⟩)
· rw [if_neg hc₁, if_neg hc₂] at h
exact hg.right.left ⟨hx₁, hc₁⟩ ⟨hx₂, hc₂⟩ h
· -- `Set.SurjOn g' B (Set.Iio n.succ)`
have := hg.right.right
unfold Set.SurjOn Set.image at this ⊢
rw [Set.subset_def] at this ⊢
simp only [Set.mem_Iio, Set.mem_setOf_eq] at this ⊢
intro x hx
by_cases hc₁ : x = n
· refine ⟨a, hc, ?_⟩
simp only [ite_true]
exact hc₁.symm
· apply Or.elim (Nat.lt_or_eq_of_lt hx)
· intro hx₁
have ⟨b, ⟨hb₁, hb₂⟩, hb₃⟩ := this x hx₁
refine ⟨b, hb₁, ?_⟩
simp only [Set.mem_singleton_iff] at hb₂
rwa [if_neg hb₂]
· intro hx₁
exact absurd hx₁ hc₁
· have hA₁ : (A \ {a}) \ (B \ {a}) = (A \ B) \ {a} :=
Set.diff_mem_diff_mem_eq_diff_diff_mem
have hA₂ : (A \ B) \ {a} = A \ B := by
refine Set.not_mem_diff_eq_self ?_
by_contra na
exact absurd hc na.right
rw [hA₁, hA₂] at hn₃
suffices (Set.Iio m) \ (Set.Iio n) ≈ (Set.Iio m.succ) \ (Set.Iio n.succ)
from Set.equinumerous_trans hn₃ this
-- `m - n ≈ m⁺ - n⁺`
refine ⟨fun x => x + 1, ?_, ?_, ?_⟩
· intro x ⟨hx₁, hx₂⟩
simp at hx₁ hx₂ ⊢
exact ⟨Nat.le_add_of_sub_le hx₂, Nat.add_lt_of_lt_sub hx₁⟩
· intro _ _ _ _ h
simp only [add_left_inj] at h
exact h
· unfold Set.SurjOn Set.image
rw [Set.subset_def]
intro x ⟨hx₁, hx₂⟩
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.mem_setOf_eq,
Set.mem_Iio
] at hx₁ hx₂ ⊢
have ⟨p, hp⟩ : ∃ p : , x = p.succ := by
refine Nat.exists_eq_succ_of_ne_zero ?_
have := calc 0
_ < n.succ := by simp
_ ≤ x := hx₂
exact Nat.pos_iff_ne_zero.mp this
refine ⟨p, ⟨?_, ?_⟩, hp.symm⟩
· rw [hp] at hx₂
exact Nat.lt_succ.mp hx₂
· rw [hp] at hx₁
exact Nat.succ_lt_succ_iff.mp hx₁
· have hB : B \ {a} = B := Set.not_mem_diff_eq_self hc
refine ⟨n, ?_, ?_, ?_⟩
· calc n
_ ≤ m := hn₁
_ ≤ m + 1 := by simp
· rwa [← hB]
· rw [hB] at hn₃
have ⟨g, hg⟩ := hn₃
have hAB : A \ B ≈ (Set.Iio m) \ (Set.Iio n) {m} := by
refine ⟨fun x => if x = a then m else g x, ?_, ?_, ?_⟩
· intro x hx
dsimp only
by_cases hc₁ : x = a
· rw [if_pos hc₁]
simp
· rw [if_neg hc₁]
have := hg.left ⟨⟨hx.left, hc₁⟩, hx.right⟩
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.union_singleton,
Set.mem_Ico,
lt_self_iff_false,
and_false,
Set.mem_insert_iff
] at this ⊢
right
exact this
· intro x₁ hx₁ x₂ hx₂ h
dsimp only at h
by_cases hc₁ : x₁ = a <;> by_cases hc₂ : x₂ = a
· rw [hc₁, hc₂]
· rw [if_pos hc₁, if_neg hc₂] at h
have := hg.left ⟨⟨hx₂.left, hc₂⟩, hx₂.right⟩
simp at this
exact absurd h.symm (Nat.ne_of_lt this.right)
· rw [if_neg hc₁, if_pos hc₂] at h
have := hg.left ⟨⟨hx₁.left, hc₁⟩, hx₁.right⟩
simp at this
exact absurd h (Nat.ne_of_lt this.right)
· rw [if_neg hc₁, if_neg hc₂] at h
exact hg.right.left ⟨⟨hx₁.left, hc₁⟩, hx₁.right⟩ ⟨⟨hx₂.left, hc₂⟩, hx₂.right⟩ h
· have := hg.right.right
unfold Set.SurjOn Set.image at this ⊢
rw [Set.subset_def] at this ⊢
simp at this ⊢
refine ⟨⟨a, ⟨ha₁, hc⟩, ?_⟩, ?_⟩
· intro ha
simp at ha
· intro x hx₁ hx₂
have ⟨y, hy₁, hy₂⟩ := this x hx₁ hx₂
refine ⟨y, ?_, ?_⟩
· exact ⟨hy₁.left.left, hy₁.right⟩
· rwa [if_neg hy₁.left.right]
suffices (Set.Iio m) \ (Set.Iio n) {m} ≈ (Set.Iio m.succ) \ (Set.Iio n)
from Set.equinumerous_trans hAB this
refine ⟨fun x => x, ?_, ?_, ?_⟩
· intro x hx
simp at hx ⊢
apply Or.elim hx
· intro hx₁
rw [hx₁]
exact ⟨hn₁, by simp⟩
· intro ⟨hx₁, hx₂⟩
exact ⟨hx₁, calc x
_ < m := hx₂
_ < m + 1 := by simp⟩
· intro _ _ _ _ h
exact h
· unfold Set.SurjOn Set.image
rw [Set.subset_def]
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.mem_Ico,
Set.union_singleton,
lt_self_iff_false,
and_false,
Set.mem_insert_iff,
exists_eq_right,
Set.mem_setOf_eq,
and_imp
]
intro x hn hm
apply Or.elim (Nat.lt_or_eq_of_lt hm)
· intro hx
right
exact ⟨hn, hx⟩
· intro hx
left
exact hx
lemma sdiff_size [DecidableEq α] [Nonempty α] {A B : Set α}
(hB : B ⊆ A) (hA : A ≈ Set.Iio m)
: ∃ n : , n ≤ m ∧ B ≈ Set.Iio n ∧ A \ B ≈ (Set.Iio m) \ (Set.Iio n) :=
sdiff_size_aux A hA B hB
/-- ### Exercise 6.7
Assume that `A` is finite and `f : A → A`. Show that `f` is one-to-one **iff**
`ran f = A`.
-/
theorem exercise_6_7 [DecidableEq α] [Nonempty α] {A : Set α} {f : αα}
(hA₁ : Set.Finite A) (hA₂ : Set.MapsTo f A A)
: Set.InjOn f A ↔ f '' A = A := by
apply Iff.intro
· intro hf
have hf₂ : A ≈ f '' A := by
refine ⟨f, ?_, hf, ?_⟩
· -- `Set.MapsTo f A (f '' A)`
intro x hx
simp only [Set.mem_image]
exact ⟨x, hx, rfl⟩
· -- `Set.SurjOn f A (f '' A)`
intro _ hx
exact hx
have hf₃ : f '' A ⊆ A := by
show ∀ x, x ∈ f '' A → x ∈ A
intro x ⟨a, ha₁, ha₂⟩
rw [← ha₂]
exact hA₂ ha₁
rw [subset_iff_ssubset_or_eq] at hf₃
exact Or.elim hf₃ (fun h => absurd hf₂ (corollary_6c hA₁ h)) id
· intro hf₁
by_cases hA₃ : A = ∅
· rw [hA₃]
simp
· intro x₁ hx₁ x₂ hx₂ hf₂
let y := f x₁
let B := f ⁻¹' {y}
have hB₁ : x₁ ∈ B := sorry
have hB₂ : x₂ ∈ B := sorry
have hB₃ : B ⊆ A := sorry
have ⟨m₁, n₁, hm₁, hn₁, hmn₁⟩ := subset_size hB₃ hA₁
have hf'₁ : Set.MapsTo f (A \ B) (A \ {y}) := sorry
have hf'₂ : f '' (A \ B) = A \ {y} := sorry
have hf'₃ : Set.Finite (A \ B) := sorry
have hf'₄ : Set.Finite (A \ {y}) := sorry
have ⟨m₂, n₂, hm₂, hn₂, hmn₂⟩ := finite_dom_ran_size hf'₃ hf'₄ hf'₁
have h₁ : A \ B ≈ Set.Iio (n₁ - m₁) := sorry
have h₂ : A \ {y} ≈ Set.Iio (n₁ - 1) := sorry
sorry
/-- ### Exercise 6.8
Prove that the union of two finites sets is finite, without any use of
arithmetic.
-/
theorem exercise_6_8 {A B : Set α} (hA : Set.Finite A) (hB : Set.Finite B)
: Set.Finite (A B) := by
sorry
/-- ### Exercise 6.9
Prove that the Cartesian product of two finites sets is finite, without any use
of arithmetic.
-/
theorem exercise_6_9 {A : Set α} {B : Set β}
(hA : Set.Finite A) (hB : Set.Finite B)
: Set.Finite (Set.prod A B) := by
sorry
end Enderton.Set.Chapter_6