2023-09-14 15:00:28 +00:00
|
|
|
|
import Common.Logic.Basic
|
|
|
|
|
import Common.Nat.Basic
|
2023-09-14 19:50:22 +00:00
|
|
|
|
import Common.Set.Basic
|
|
|
|
|
import Common.Set.Finite
|
|
|
|
|
import Mathlib.Data.Finset.Card
|
2023-08-24 00:23:28 +00:00
|
|
|
|
import Mathlib.Data.Set.Finite
|
2023-09-14 19:50:22 +00:00
|
|
|
|
import Mathlib.Tactic.LibrarySearch
|
2023-08-16 18:46:16 +00:00
|
|
|
|
|
|
|
|
|
/-! # Enderton.Set.Chapter_6
|
|
|
|
|
|
|
|
|
|
Cardinal Numbers and the Axiom of Choice
|
|
|
|
|
|
2023-09-14 19:50:22 +00:00
|
|
|
|
NOTE: We choose to use injectivity/surjectivity concepts found in
|
|
|
|
|
`Mathlib.Data.Set.Function` over those in `Mathlib.Init.Function` since the
|
|
|
|
|
former provides noncomputable utilities around obtaining inverse functions
|
|
|
|
|
(namely `Function.invFunOn`).
|
2023-08-16 18:46:16 +00:00
|
|
|
|
-/
|
|
|
|
|
|
2023-09-14 19:50:22 +00:00
|
|
|
|
namespace Enderton.Set.Chapter_6
|
2023-08-16 18:46:16 +00:00
|
|
|
|
|
2023-08-24 00:23:28 +00:00
|
|
|
|
/-- #### Theorem 6B
|
|
|
|
|
|
|
|
|
|
No set is equinumerous to its powerset.
|
|
|
|
|
-/
|
|
|
|
|
theorem theorem_6b (A : Set α)
|
|
|
|
|
: ∀ f, ¬ Set.BijOn f A (𝒫 A) := by
|
|
|
|
|
intro f hf
|
|
|
|
|
unfold Set.BijOn at hf
|
|
|
|
|
let φ := { a ∈ A | a ∉ f a }
|
|
|
|
|
suffices ∀ a ∈ A, f a ≠ φ by
|
|
|
|
|
have hφ := hf.right.right (show φ ∈ 𝒫 A by simp)
|
|
|
|
|
have ⟨a, ha⟩ := hφ
|
|
|
|
|
exact absurd ha.right (this a ha.left)
|
|
|
|
|
intro a ha hfa
|
|
|
|
|
by_cases h : a ∈ f a
|
|
|
|
|
· have h' := h
|
|
|
|
|
rw [hfa] at h
|
|
|
|
|
simp only [Set.mem_setOf_eq] at h
|
|
|
|
|
exact absurd h' h.right
|
|
|
|
|
· rw [Set.Subset.antisymm_iff] at hfa
|
|
|
|
|
have := hfa.right ⟨ha, h⟩
|
|
|
|
|
exact absurd this h
|
|
|
|
|
|
2023-09-14 19:50:22 +00:00
|
|
|
|
/-! ### Pigeonhole Principle -/
|
2023-08-24 00:23:28 +00:00
|
|
|
|
|
2023-09-14 19:50:22 +00:00
|
|
|
|
/--
|
|
|
|
|
A subset of a finite set of natural numbers has a max member.
|
|
|
|
|
-/
|
|
|
|
|
lemma subset_finite_max_nat {S' S : Set ℕ}
|
|
|
|
|
(hS : Set.Finite S) (hS' : Set.Nonempty S') (h : S' ⊆ S)
|
|
|
|
|
: ∃ m, m ∈ S' ∧ ∀ n, n ∈ S' → n ≤ m := by
|
|
|
|
|
have ⟨m, hm₁, hm₂⟩ :=
|
|
|
|
|
Set.Finite.exists_maximal_wrt id S' (Set.Finite.subset hS h) hS'
|
|
|
|
|
simp only [id_eq] at hm₂
|
|
|
|
|
refine ⟨m, hm₁, ?_⟩
|
|
|
|
|
intro n hn
|
|
|
|
|
match @trichotomous ℕ LT.lt _ m n with
|
|
|
|
|
| Or.inr (Or.inl r) => exact Nat.le_of_eq r.symm
|
|
|
|
|
| Or.inl r =>
|
|
|
|
|
have := hm₂ n hn (Nat.le_of_lt r)
|
|
|
|
|
exact Nat.le_of_eq this.symm
|
|
|
|
|
| Or.inr (Or.inr r) => exact Nat.le_of_lt r
|
|
|
|
|
|
|
|
|
|
/--
|
|
|
|
|
Auxiliary function to be proven by induction.
|
2023-08-24 00:23:28 +00:00
|
|
|
|
-/
|
2023-09-14 16:00:39 +00:00
|
|
|
|
lemma pigeonhole_principle_aux (n : ℕ)
|
2023-09-14 19:50:22 +00:00
|
|
|
|
: ∀ M, M ⊂ Set.Iio n →
|
|
|
|
|
∀ f : ℕ → ℕ,
|
|
|
|
|
Set.MapsTo f M (Set.Iio n) ∧ Set.InjOn f M →
|
|
|
|
|
¬ Set.SurjOn f M (Set.Iio n) := by
|
2023-08-24 13:50:47 +00:00
|
|
|
|
induction n with
|
|
|
|
|
| zero =>
|
2023-09-14 19:50:22 +00:00
|
|
|
|
intro _ hM
|
|
|
|
|
unfold Set.Iio at hM
|
|
|
|
|
simp only [Nat.zero_eq, not_lt_zero', Set.setOf_false] at hM
|
|
|
|
|
rw [Set.ssubset_empty_iff_false] at hM
|
|
|
|
|
exact False.elim hM
|
2023-08-24 13:50:47 +00:00
|
|
|
|
| succ n ih =>
|
2023-09-14 19:50:22 +00:00
|
|
|
|
intro M hM f ⟨hf_maps, hf_inj⟩ hf_surj
|
|
|
|
|
|
|
|
|
|
by_cases hM' : M = ∅
|
|
|
|
|
· unfold Set.SurjOn at hf_surj
|
|
|
|
|
rw [hM'] at hf_surj
|
|
|
|
|
simp only [Set.image_empty] at hf_surj
|
|
|
|
|
rw [Set.subset_def] at hf_surj
|
|
|
|
|
exact hf_surj n (show n < n + 1 by simp)
|
|
|
|
|
|
|
|
|
|
by_cases h : ¬ ∃ t, t ∈ M ∧ f t = n
|
2023-09-14 15:00:28 +00:00
|
|
|
|
-- Trivial case. `f` must not be onto if this is the case.
|
2023-09-14 19:50:22 +00:00
|
|
|
|
· have ⟨t, ht⟩ := hf_surj (show n ∈ _ by simp)
|
|
|
|
|
exact absurd ⟨t, ht⟩ h
|
2023-09-14 15:00:28 +00:00
|
|
|
|
|
|
|
|
|
-- Continue under the assumption `n ∈ ran f`.
|
2023-09-14 19:50:22 +00:00
|
|
|
|
simp only [not_not] at h
|
|
|
|
|
have ⟨t, ht₁, ht₂⟩ := h
|
|
|
|
|
|
|
|
|
|
-- `M ≠ ∅` so `∃ p, ∀ x ∈ M, p ≥ x`.
|
|
|
|
|
have ⟨p, hp₁, hp₂⟩ : ∃ p ∈ M, ∀ x, x ∈ M → p ≥ x := by
|
|
|
|
|
refine subset_finite_max_nat (show Set.Finite M from ?_) ?_ ?_
|
|
|
|
|
· have := Set.finite_lt_nat (n + 1)
|
|
|
|
|
exact Set.Finite.subset this (subset_of_ssubset hM)
|
|
|
|
|
· exact Set.nmem_singleton_empty.mp hM'
|
|
|
|
|
· show ∀ t, t ∈ M → t ∈ M
|
|
|
|
|
simp only [imp_self, forall_const]
|
|
|
|
|
|
|
|
|
|
-- `g` is a variant of `f` in which the largest element of its domain
|
2023-09-14 15:00:28 +00:00
|
|
|
|
-- (i.e. `p`) corresponds to value `n`.
|
2023-09-14 19:50:22 +00:00
|
|
|
|
let g x := if x = p then n else if x = t then f p else f x
|
|
|
|
|
|
|
|
|
|
have hg_maps : Set.MapsTo g M (Set.Iio (n + 1)) := by
|
|
|
|
|
intro x hx
|
|
|
|
|
dsimp only
|
|
|
|
|
by_cases hx₁ : x = p
|
|
|
|
|
· rw [hx₁]
|
|
|
|
|
simp
|
|
|
|
|
· rw [if_neg hx₁]
|
|
|
|
|
by_cases hx₂ : x = t
|
|
|
|
|
· rw [hx₂]
|
|
|
|
|
simp only [ite_true, Set.mem_Iio]
|
|
|
|
|
exact hf_maps hp₁
|
|
|
|
|
· rw [if_neg hx₂]
|
|
|
|
|
simp only [Set.mem_Iio]
|
|
|
|
|
exact hf_maps hx
|
|
|
|
|
|
|
|
|
|
have hg_inj : Set.InjOn g M := by
|
|
|
|
|
intro x₁ hx₁ x₂ hx₂ hf'
|
|
|
|
|
by_cases hc₁ : x₁ = p
|
|
|
|
|
· by_cases hc₂ : x₂ = p
|
|
|
|
|
· rw [hc₁, hc₂]
|
|
|
|
|
· dsimp at hf'
|
|
|
|
|
rw [hc₁] at hf'
|
2023-09-14 15:00:28 +00:00
|
|
|
|
simp only [ite_self, ite_true] at hf'
|
2023-09-14 19:50:22 +00:00
|
|
|
|
by_cases hc₃ : x₂ = t
|
|
|
|
|
· rw [if_neg hc₂, if_pos hc₃, ← ht₂] at hf'
|
|
|
|
|
rw [hc₁] at hx₁ ⊢
|
|
|
|
|
rw [hc₃] at hx₂ ⊢
|
|
|
|
|
exact hf_inj hx₁ hx₂ hf'.symm
|
|
|
|
|
· rw [if_neg hc₂, if_neg hc₃, ← ht₂] at hf'
|
|
|
|
|
have := hf_inj ht₁ hx₂ hf'
|
|
|
|
|
exact absurd this.symm hc₃
|
|
|
|
|
· by_cases hc₂ : x₂ = p
|
|
|
|
|
· rw [hc₂] at hf'
|
2023-09-14 15:00:28 +00:00
|
|
|
|
simp only [ite_self, ite_true] at hf'
|
2023-09-14 19:50:22 +00:00
|
|
|
|
by_cases hc₃ : x₁ = t
|
|
|
|
|
· rw [if_neg hc₁, if_pos hc₃, ← ht₂] at hf'
|
|
|
|
|
rw [hc₃] at hx₁ ⊢
|
|
|
|
|
rw [hc₂] at hx₂ ⊢
|
|
|
|
|
have := hf_inj hx₂ hx₁ hf'
|
|
|
|
|
exact this.symm
|
|
|
|
|
· rw [if_neg hc₁, if_neg hc₃, ← ht₂] at hf'
|
|
|
|
|
have := hf_inj hx₁ ht₁ hf'
|
|
|
|
|
exact absurd this hc₃
|
2023-09-14 15:00:28 +00:00
|
|
|
|
· dsimp only at hf'
|
2023-09-14 19:50:22 +00:00
|
|
|
|
rw [if_neg hc₁, if_neg hc₂] at hf'
|
|
|
|
|
by_cases hc₃ : x₁ = t
|
|
|
|
|
· by_cases hc₄ : x₂ = t
|
|
|
|
|
· rw [hc₃, hc₄]
|
|
|
|
|
· rw [if_pos hc₃, if_neg hc₄] at hf'
|
|
|
|
|
have := hf_inj hp₁ hx₂ hf'
|
|
|
|
|
exact absurd this.symm hc₂
|
|
|
|
|
· by_cases hc₄ : x₂ = t
|
|
|
|
|
· rw [if_neg hc₃, if_pos hc₄] at hf'
|
|
|
|
|
have := hf_inj hx₁ hp₁ hf'
|
|
|
|
|
exact absurd this hc₁
|
|
|
|
|
· rw [if_neg hc₃, if_neg hc₄] at hf'
|
|
|
|
|
exact hf_inj hx₁ hx₂ hf'
|
|
|
|
|
|
|
|
|
|
let M' := M \ {p}
|
|
|
|
|
have hM' : M' ⊂ Set.Iio n := by
|
|
|
|
|
by_cases hc : p = n
|
|
|
|
|
· suffices Set.Iio (n + 1) \ {n} = Set.Iio n by
|
|
|
|
|
have h₁ := Set.diff_ssubset_diff_left hM hp₁
|
|
|
|
|
conv at h₁ => right; rw [hc]
|
|
|
|
|
rwa [← this]
|
|
|
|
|
ext x
|
|
|
|
|
apply Iff.intro
|
|
|
|
|
· intro hx₁
|
|
|
|
|
refine Or.elim (Nat.lt_or_eq_of_lt hx₁.left) (by simp) ?_
|
|
|
|
|
intro hx₂
|
|
|
|
|
rw [hx₂] at hx₁
|
|
|
|
|
simp at hx₁
|
|
|
|
|
· intro hx₁
|
|
|
|
|
exact ⟨Nat.lt_trans hx₁ (by simp), Nat.ne_of_lt hx₁⟩
|
|
|
|
|
|
|
|
|
|
have hp_lt_n : p < n := by
|
|
|
|
|
have := subset_of_ssubset hM
|
|
|
|
|
have hp' : p < n + 1 := this hp₁
|
|
|
|
|
exact Or.elim (Nat.lt_or_eq_of_lt hp') id (absurd · hc)
|
|
|
|
|
|
|
|
|
|
rw [Set.ssubset_def]
|
|
|
|
|
apply And.intro
|
|
|
|
|
· show ∀ x, x ∈ M' → x < n
|
|
|
|
|
intro x hx
|
|
|
|
|
simp only [Set.mem_diff, Set.mem_singleton_iff] at hx
|
|
|
|
|
calc x
|
|
|
|
|
_ ≤ p := hp₂ x hx.left
|
|
|
|
|
_ < n := hp_lt_n
|
|
|
|
|
· show ¬ ∀ x, x < n → x ∈ M'
|
|
|
|
|
by_contra np
|
|
|
|
|
have := np p hp_lt_n
|
|
|
|
|
simp at this
|
|
|
|
|
|
|
|
|
|
-- Consider `g = f' - {⟨p, n⟩}`. This restriction will allow us to use
|
|
|
|
|
-- the induction hypothesis to prove `g` isn't surjective.
|
|
|
|
|
have ng_surj : ¬ Set.SurjOn g M' (Set.Iio n) := by
|
|
|
|
|
refine ih _ hM' g ⟨?_, ?_⟩
|
|
|
|
|
· -- `Set.MapsTo g M' (Set.Iio n)`
|
|
|
|
|
intro x hx
|
|
|
|
|
have hx₁ : x ∈ M := Set.mem_of_mem_diff hx
|
|
|
|
|
apply Or.elim (Nat.lt_or_eq_of_lt $ hg_maps hx₁)
|
|
|
|
|
· exact id
|
|
|
|
|
· intro hx₂
|
|
|
|
|
rw [← show g p = n by simp] at hx₂
|
|
|
|
|
exact absurd (hg_inj hx₁ hp₁ hx₂) hx.right
|
|
|
|
|
· -- `Set.InjOn g M'`
|
|
|
|
|
intro x₁ hx₁ x₂ hx₂ hg
|
|
|
|
|
have hx₁' : x₁ ∈ M := (Set.diff_subset M {p}) hx₁
|
|
|
|
|
have hx₂' : x₂ ∈ M := (Set.diff_subset M {p}) hx₂
|
|
|
|
|
exact hg_inj hx₁' hx₂' hg
|
2023-09-14 15:00:28 +00:00
|
|
|
|
|
2023-09-14 19:50:22 +00:00
|
|
|
|
-- We have shown `g` isn't surjective. This is another way of saying that.
|
|
|
|
|
have ⟨a, ha₁, ha₂⟩ : ∃ a, a < n ∧ a ∉ g '' M' := by
|
|
|
|
|
unfold Set.SurjOn at ng_surj
|
|
|
|
|
rw [Set.subset_def] at ng_surj
|
|
|
|
|
simp only [
|
|
|
|
|
Set.mem_Iio,
|
|
|
|
|
Set.mem_image,
|
|
|
|
|
not_forall,
|
|
|
|
|
not_exists,
|
|
|
|
|
not_and,
|
|
|
|
|
exists_prop
|
|
|
|
|
] at ng_surj
|
|
|
|
|
unfold Set.image
|
|
|
|
|
simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and]
|
|
|
|
|
exact ng_surj
|
|
|
|
|
|
|
|
|
|
-- If `g` isn't surjective then neither is `f`.
|
|
|
|
|
refine absurd (hf_surj $ calc a
|
|
|
|
|
_ < n := ha₁
|
|
|
|
|
_ < n + 1 := by simp) (show ↑a ∉ f '' M from ?_)
|
|
|
|
|
|
|
|
|
|
suffices g '' M = f '' M by
|
|
|
|
|
rw [← this]
|
|
|
|
|
show a ∉ g '' M
|
|
|
|
|
unfold Set.image at ha₂ ⊢
|
|
|
|
|
simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and] at ha₂ ⊢
|
|
|
|
|
intro x hx
|
|
|
|
|
by_cases hxp : x = p
|
|
|
|
|
· rw [if_pos hxp]
|
|
|
|
|
exact (Nat.ne_of_lt ha₁).symm
|
|
|
|
|
· refine ha₂ x ?_
|
|
|
|
|
exact Set.mem_diff_of_mem hx hxp
|
|
|
|
|
|
|
|
|
|
ext x
|
|
|
|
|
simp only [Set.mem_image, Set.mem_Iio]
|
|
|
|
|
apply Iff.intro
|
|
|
|
|
· intro ⟨y, hy₁, hy₂⟩
|
|
|
|
|
by_cases hc₁ : y = p
|
|
|
|
|
· rw [if_pos hc₁] at hy₂
|
|
|
|
|
rw [hy₂] at ht₂
|
|
|
|
|
exact ⟨t, ht₁, ht₂⟩
|
|
|
|
|
· rw [if_neg hc₁] at hy₂
|
|
|
|
|
by_cases hc₂ : y = t
|
|
|
|
|
· rw [if_pos hc₂] at hy₂
|
|
|
|
|
exact ⟨p, hp₁, hy₂⟩
|
|
|
|
|
· rw [if_neg hc₂] at hy₂
|
|
|
|
|
exact ⟨y, hy₁, hy₂⟩
|
|
|
|
|
· intro ⟨y, hy₁, hy₂⟩
|
|
|
|
|
by_cases hc₁ : y = p
|
|
|
|
|
· refine ⟨t, ht₁, ?_⟩
|
|
|
|
|
by_cases hc₂ : y = t
|
|
|
|
|
· rw [hc₂, ht₂] at hy₂
|
|
|
|
|
rw [← hc₁, ← hc₂]
|
2023-09-14 15:00:28 +00:00
|
|
|
|
simp only [ite_self, ite_true]
|
2023-09-14 19:50:22 +00:00
|
|
|
|
exact hy₂
|
|
|
|
|
· rw [hc₁, ← Ne.def] at hc₂
|
|
|
|
|
rwa [if_neg hc₂.symm, if_pos rfl, ← hc₁]
|
|
|
|
|
· by_cases hc₂ : y = t
|
|
|
|
|
· refine ⟨p, hp₁, ?_⟩
|
|
|
|
|
simp only [ite_self, ite_true]
|
|
|
|
|
rwa [hc₂, ht₂] at hy₂
|
|
|
|
|
· refine ⟨y, hy₁, ?_⟩
|
|
|
|
|
rwa [if_neg hc₁, if_neg hc₂]
|
|
|
|
|
|
|
|
|
|
/--
|
|
|
|
|
No natural number is equinumerous to a proper subset of itself.
|
|
|
|
|
-/
|
|
|
|
|
theorem pigeonhole_principle {n : ℕ}
|
|
|
|
|
: ∀ M, M ⊂ Set.Iio n → ∀ f, ¬ Set.BijOn f M (Set.Iio n) := by
|
|
|
|
|
intro M hM f nf
|
|
|
|
|
have := pigeonhole_principle_aux n M hM f ⟨nf.left, nf.right.left⟩
|
|
|
|
|
exact absurd nf.right.right this
|
2023-09-14 16:00:39 +00:00
|
|
|
|
|
2023-08-24 00:23:28 +00:00
|
|
|
|
/-- #### Corollary 6C
|
|
|
|
|
|
|
|
|
|
No finite set is equinumerous to a proper subset of itself.
|
|
|
|
|
-/
|
2023-09-14 19:50:22 +00:00
|
|
|
|
theorem corollary_6c [DecidableEq α] [Nonempty α] {S S' : Finset α} (h : S' ⊂ S)
|
|
|
|
|
: ∀ f, ¬ Set.BijOn f S.toSet S'.toSet := by
|
|
|
|
|
have ⟨T, hT₁, hT₂⟩ : ∃ T, Disjoint S' T ∧ S = S' ∪ T := by
|
|
|
|
|
refine ⟨S \ S', ?_, ?_⟩
|
|
|
|
|
· intro X hX₁ hX₂
|
|
|
|
|
show ∀ t, t ∈ X → t ∈ ⊥
|
|
|
|
|
intro t ht
|
|
|
|
|
have ht₂ := hX₂ ht
|
|
|
|
|
simp only [Finset.mem_sdiff] at ht₂
|
|
|
|
|
exact absurd (hX₁ ht) ht₂.right
|
|
|
|
|
· simp only [
|
|
|
|
|
Finset.union_sdiff_self_eq_union,
|
|
|
|
|
Finset.right_eq_union_iff_subset
|
|
|
|
|
]
|
|
|
|
|
exact subset_of_ssubset h
|
|
|
|
|
|
|
|
|
|
-- `hF : S' ∪ T ≈ S`.
|
|
|
|
|
-- `hG : S ≈ n`.
|
|
|
|
|
-- `hH : S' ∪ T ≈ n`.
|
|
|
|
|
have ⟨F, hF⟩ := Set.equinumerous_refl S.toSet
|
|
|
|
|
conv at hF => arg 2; rw [hT₂]
|
|
|
|
|
have ⟨n, G, hG⟩ := Set.finite_iff_equinumerous_nat.mp (Finset.finite_toSet S)
|
|
|
|
|
have ⟨H, hH⟩ := Set.equinumerous_trans hF hG
|
|
|
|
|
|
|
|
|
|
-- Restrict `H` to `S'` to yield a bijection between `S'` and `m < n`.
|
|
|
|
|
let R := (Set.Iio n) \ (H '' T)
|
|
|
|
|
have hR : Set.BijOn H S' R := by
|
|
|
|
|
refine ⟨?_, ?_, ?_⟩
|
|
|
|
|
· -- `Set.MapsTo H S' R`
|
|
|
|
|
intro x hx
|
|
|
|
|
refine ⟨hH.left $ Finset.mem_union_left T hx, ?_⟩
|
|
|
|
|
unfold Set.image
|
|
|
|
|
by_contra nx
|
|
|
|
|
simp only [Finset.mem_coe, Set.mem_setOf_eq] at nx
|
|
|
|
|
|
|
|
|
|
have ⟨a, ha₁, ha₂⟩ := nx
|
|
|
|
|
have hc₁ : a ∈ S' ∪ T := Finset.mem_union_right S' ha₁
|
|
|
|
|
have hc₂ : x ∈ S' ∪ T := Finset.mem_union_left T hx
|
|
|
|
|
rw [hH.right.left hc₁ hc₂ ha₂] at ha₁
|
|
|
|
|
|
|
|
|
|
have hx₁ : {x} ⊆ S' := Finset.singleton_subset_iff.mpr hx
|
|
|
|
|
have hx₂ : {x} ⊆ T := Finset.singleton_subset_iff.mpr ha₁
|
|
|
|
|
have hx₃ := hT₁ hx₁ hx₂
|
|
|
|
|
simp only [
|
|
|
|
|
Finset.bot_eq_empty,
|
|
|
|
|
Finset.le_eq_subset,
|
|
|
|
|
Finset.singleton_subset_iff,
|
|
|
|
|
Finset.not_mem_empty
|
|
|
|
|
] at hx₃
|
|
|
|
|
· -- `Set.InjOn H S'`
|
|
|
|
|
intro x₁ hx₁ x₂ hx₂ h
|
|
|
|
|
have hc₁ : x₁ ∈ S' ∪ T := Finset.mem_union_left T hx₁
|
|
|
|
|
have hc₂ : x₂ ∈ S' ∪ T := Finset.mem_union_left T hx₂
|
|
|
|
|
exact hH.right.left hc₁ hc₂ h
|
|
|
|
|
· -- `Set.SurjOn H S' R`
|
|
|
|
|
show ∀ r, r ∈ R → r ∈ H '' S'
|
|
|
|
|
intro r hr
|
|
|
|
|
unfold Set.image
|
|
|
|
|
simp only [Finset.mem_coe, Set.mem_setOf_eq]
|
|
|
|
|
dsimp only at hr
|
|
|
|
|
have := hH.right.right hr.left
|
|
|
|
|
simp only [
|
|
|
|
|
Finset.coe_union,
|
|
|
|
|
Set.mem_image,
|
|
|
|
|
Set.mem_union,
|
|
|
|
|
Finset.mem_coe
|
|
|
|
|
] at this
|
|
|
|
|
have ⟨x, hx⟩ := this
|
|
|
|
|
apply Or.elim hx.left
|
|
|
|
|
· intro hx'
|
|
|
|
|
exact ⟨x, hx', hx.right⟩
|
|
|
|
|
· intro hx'
|
|
|
|
|
refine absurd ?_ hr.right
|
|
|
|
|
rw [← hx.right]
|
|
|
|
|
simp only [Set.mem_image, Finset.mem_coe]
|
|
|
|
|
exact ⟨x, hx', rfl⟩
|
|
|
|
|
|
|
|
|
|
intro f nf
|
|
|
|
|
have ⟨f₁, hf₁⟩ : ∃ f₁ : α → ℕ, Set.BijOn f₁ S R :=
|
|
|
|
|
Set.equinumerous_trans nf hR
|
|
|
|
|
have ⟨f₂, hf₂⟩ : ∃ f₃ : ℕ → ℕ, Set.BijOn f₃ R (Set.Iio n) := by
|
|
|
|
|
have ⟨k, hk₁⟩ := Set.equinumerous_symm hf₁
|
|
|
|
|
exact Set.equinumerous_trans hk₁ hG
|
|
|
|
|
|
|
|
|
|
refine absurd hf₂ (pigeonhole_principle R ?_ f₂)
|
|
|
|
|
show R ⊂ Set.Iio n
|
|
|
|
|
apply And.intro
|
|
|
|
|
· show ∀ r, r ∈ R → r ∈ Set.Iio n
|
|
|
|
|
intro _ hr
|
|
|
|
|
exact hr.left
|
|
|
|
|
· show ¬ ∀ r, r ∈ Set.Iio n → r ∈ R
|
|
|
|
|
intro nr
|
|
|
|
|
have ⟨t, ht₁⟩ : Finset.Nonempty T := by
|
|
|
|
|
rw [hT₂, Finset.ssubset_def] at h
|
|
|
|
|
have : ¬ ∀ x, x ∈ S' ∪ T → x ∈ S' := h.right
|
|
|
|
|
simp only [Finset.mem_union, not_forall, exists_prop] at this
|
|
|
|
|
have ⟨x, hx⟩ := this
|
|
|
|
|
apply Or.elim hx.left
|
|
|
|
|
· intro nx
|
|
|
|
|
exact absurd nx hx.right
|
|
|
|
|
· intro hx
|
|
|
|
|
exact ⟨x, hx⟩
|
|
|
|
|
have ht₂ : H t ∈ Set.Iio n := hH.left (Finset.mem_union_right S' ht₁)
|
|
|
|
|
have ht₃ : H t ∈ R := nr (H t) ht₂
|
|
|
|
|
exact absurd ⟨t, ht₁, rfl⟩ ht₃.right
|
2023-08-24 00:23:28 +00:00
|
|
|
|
|
|
|
|
|
/-- #### Corollary 6D (a)
|
|
|
|
|
|
|
|
|
|
Any set equinumerous to a proper subset of itself is infinite.
|
|
|
|
|
-/
|
|
|
|
|
theorem corollary_6d_a (S S' : Set α) (hS : S' ⊂ S) (hf : S' ≃ S)
|
|
|
|
|
: Set.Infinite S := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
/-- #### Corollary 6D (b)
|
|
|
|
|
|
|
|
|
|
The set `ω` is infinite.
|
|
|
|
|
-/
|
|
|
|
|
theorem corollary_6d_b
|
|
|
|
|
: Set.Infinite (@Set.univ ℕ) := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
/-- #### Corollary 6E
|
|
|
|
|
|
|
|
|
|
Any finite set is equinumerous to a unique natural number.
|
|
|
|
|
-/
|
2023-08-24 13:50:47 +00:00
|
|
|
|
theorem corollary_6e (S : Set α) (hn : S ≃ Fin n) (hm : S ≃ Fin m)
|
|
|
|
|
: m = n := by
|
2023-08-24 00:23:28 +00:00
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
/-- #### Lemma 6F
|
|
|
|
|
|
|
|
|
|
If `C` is a proper subset of a natural number `n`, then `C ≈ m` for some `m`
|
|
|
|
|
less than `n`.
|
|
|
|
|
-/
|
2023-08-24 13:50:47 +00:00
|
|
|
|
lemma lemma_6f {n : ℕ} (hC : C ⊂ Finset.range n)
|
2023-08-24 00:23:28 +00:00
|
|
|
|
: ∃ m : ℕ, m < n ∧ ∃ f : C → Fin m, Function.Bijective f := by
|
|
|
|
|
sorry
|
|
|
|
|
|
2023-08-24 13:50:47 +00:00
|
|
|
|
theorem corollary_6g (S S' : Set α) (hS : Finite S) (hS' : S' ⊆ S)
|
|
|
|
|
: Finite S' := by
|
|
|
|
|
sorry
|
|
|
|
|
|
2023-08-17 20:10:21 +00:00
|
|
|
|
/-- #### Exercise 6.1
|
|
|
|
|
|
|
|
|
|
Show that the equation
|
|
|
|
|
```
|
|
|
|
|
f(m, n) = 2ᵐ(2n + 1) - 1
|
|
|
|
|
```
|
|
|
|
|
defines a one-to-one correspondence between `ω × ω` and `ω`.
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_6_1
|
|
|
|
|
: Function.Bijective (fun p : ℕ × ℕ => 2 ^ p.1 * (2 * p.2 + 1) - 1) := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
/-- #### Exercise 6.2
|
|
|
|
|
|
|
|
|
|
Show that in Fig. 32 we have:
|
|
|
|
|
```
|
|
|
|
|
J(m, n) = [1 + 2 + ⋯ + (m + n)] + m
|
|
|
|
|
= (1 / 2)[(m + n)² + 3m + n].
|
|
|
|
|
```
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_6_2
|
|
|
|
|
: Function.Bijective
|
|
|
|
|
(fun p : ℕ × ℕ => (1 / 2) * ((p.1 + p.2) ^ 2 + 3 * p.1 + p.2)) := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
/-- #### Exercise 6.3
|
|
|
|
|
|
|
|
|
|
Find a one-to-one correspondence between the open unit interval `(0, 1)` and `ℝ`
|
|
|
|
|
that takes rationals to rationals and irrationals to irrationals.
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_6_3
|
|
|
|
|
: True := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
/-- #### Exercise 6.4
|
|
|
|
|
|
|
|
|
|
Construct a one-to-one correspondence between the closed unit interval
|
|
|
|
|
```
|
|
|
|
|
[0, 1] = {x ∈ ℝ | 0 ≤ x ≤ 1}
|
|
|
|
|
```
|
|
|
|
|
and the open unit interval `(0, 1)`.
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_6_4
|
|
|
|
|
: ∃ F, Set.BijOn F (Set.Ioo 0 1) (@Set.univ ℝ) := by
|
|
|
|
|
sorry
|
|
|
|
|
|
2023-08-16 18:46:16 +00:00
|
|
|
|
end Enderton.Set.Chapter_6
|