bookshelf/Bookshelf/Enderton/Set/Chapter_6.lean

413 lines
13 KiB
Plaintext
Raw Normal View History

2023-09-14 15:00:28 +00:00
import Common.Logic.Basic
import Common.Nat.Basic
import Mathlib.Data.Finset.Basic
import Mathlib.Data.Set.Finite
import Mathlib.Data.Set.Function
import Mathlib.Data.Rel
2023-09-14 15:00:28 +00:00
import Mathlib.Tactic.Ring
import Std.Data.Fin.Lemmas
/-! # Enderton.Set.Chapter_6
Cardinal Numbers and the Axiom of Choice
-/
namespace Enderton.Set.Chapter_6
/-! #### Theorem 6A
For any sets `A`, `B`, and `C`,
(a) `A ≈ A`.
(b) If `A ≈ B`, then `B ≈ A`.
(c) If `A ≈ B` and `B ≈ C`, then `A ≈ C`.
-/
theorem theorem_6a_a (A : Set α)
: ∃ F, Set.BijOn F A A := by
refine ⟨fun x => x, ?_⟩
unfold Set.BijOn Set.MapsTo Set.InjOn Set.SurjOn
simp only [imp_self, implies_true, Set.image_id', true_and]
exact Eq.subset rfl
theorem theorem_6a_b [Nonempty α] (A : Set α) (B : Set β)
(F : α → β) (hF : Set.BijOn F A B)
: ∃ G, Set.BijOn G B A := by
refine ⟨Function.invFunOn F A, ?_⟩
exact (Set.bijOn_comm $ Set.BijOn.invOn_invFunOn hF).mpr hF
theorem theorem_6a_c (A : Set α) (B : Set β) (C : Set γ)
(F : α → β) (hF : Set.BijOn F A B)
(G : β → γ) (hG : Set.BijOn G B C)
: ∃ H, Set.BijOn H A C := by
exact ⟨G ∘ F, Set.BijOn.comp hG hF⟩
/-- #### Theorem 6B
No set is equinumerous to its powerset.
-/
theorem theorem_6b (A : Set α)
: ∀ f, ¬ Set.BijOn f A (𝒫 A) := by
intro f hf
unfold Set.BijOn at hf
let φ := { a ∈ A | a ∉ f a }
suffices ∀ a ∈ A, f a ≠ φ by
have hφ := hf.right.right (show φ ∈ 𝒫 A by simp)
have ⟨a, ha⟩ := hφ
exact absurd ha.right (this a ha.left)
intro a ha hfa
by_cases h : a ∈ f a
· have h' := h
rw [hfa] at h
simp only [Set.mem_setOf_eq] at h
exact absurd h' h.right
· rw [Set.Subset.antisymm_iff] at hfa
have := hfa.right ⟨ha, h⟩
exact absurd this h
/-- #### Pigeonhole Principle
No natural number is equinumerous to a proper subset of itself.
-/
2023-09-14 15:00:28 +00:00
theorem pigeonhole_principle (n : )
: ∀ m : , m < n →
∀ f : Fin m → Fin n, Function.Injective f →
¬ Function.Surjective f := by
induction n with
| zero =>
2023-09-14 15:00:28 +00:00
intro _ hm
simp at hm
| succ n ih =>
2023-09-14 15:00:28 +00:00
intro m hm f hf_inj hf_surj
by_cases hm' : m = 0
· have ⟨a, ha⟩ := hf_surj 0
rw [hm'] at a
have := a.isLt
simp only [not_lt_zero'] at this
-- `m ≠ 0` so `∃ p, p + 1 = m`. Represent as both a `` and `Fin` type.
have ⟨nat_p, hnat_p⟩ := Nat.exists_eq_succ_of_ne_zero hm'
have hnat_p_lt_m : nat_p < m := calc nat_p
_ < nat_p + 1 := by simp
_ = m := hnat_p.symm
let fin_p : Fin m := ⟨nat_p, hnat_p_lt_m⟩
by_cases hn : ¬ ∃ t, f t = n
-- Trivial case. `f` must not be onto if this is the case.
· exact absurd (hf_surj n) hn
-- Continue under the assumption `n ∈ ran f`.
simp only [not_not] at hn
have ⟨fin_t, hfin_t⟩ := hn
-- `f'` is a variant of `f` in which the largest element of its domain
-- (i.e. `p`) corresponds to value `n`.
let f' : Fin m → Fin (n + 1) := fun x =>
if x = fin_p then n
else if x = fin_t then f fin_p
else f x
have hf'_inj : Function.Injective f' := by
intro x₁ x₂ hf'
by_cases hx₁ : x₁ = fin_p
· by_cases hx₂ : x₂ = fin_p
· rw [hx₁, hx₂]
· rw [hx₁] at hf'
simp only [ite_self, ite_true] at hf'
by_cases ht : x₂ = fin_t
· rw [if_neg hx₂, if_pos ht, ← hfin_t] at hf'
have := (hf_inj hf').symm
rwa [hx₁, ht]
· rw [if_neg hx₂, if_neg ht, ← hfin_t] at hf'
have := (hf_inj hf').symm
exact absurd this ht
· by_cases hx₂ : x₂ = fin_p
· rw [hx₂] at hf'
simp only [ite_self, ite_true] at hf'
by_cases ht : x₁ = fin_t
· rw [if_neg hx₁, if_pos ht, ← hfin_t] at hf'
have := (hf_inj hf').symm
rw [← ht] at this
exact absurd this hx₁
· rw [if_neg hx₁, if_neg ht, ← hfin_t] at hf'
have := hf_inj hf'
exact absurd this ht
· dsimp only at hf'
rw [if_neg hx₁, if_neg hx₂] at hf'
by_cases ht₁ : x₁ = fin_t
· by_cases ht₂ : x₂ = fin_t
· rw [ht₁, ht₂]
· rw [if_pos ht₁, if_neg ht₂] at hf'
have := (hf_inj hf').symm
exact absurd this hx₂
· by_cases ht₂ : x₂ = fin_t
· rw [if_neg ht₁, if_pos ht₂] at hf'
have := hf_inj hf'
exact absurd this hx₁
· rw [if_neg ht₁, if_neg ht₂] at hf'
exact hf_inj hf'
-- `g = f' - {⟨p, n⟩}`. This restriction allows us to use the induction
-- hypothesis to prove `g` isn't surjective.
let g : Fin nat_p → Fin n := fun x =>
let hxm := calc ↑x
_ < nat_p := x.isLt
_ < m := hnat_p_lt_m
let y := f' ⟨x, hxm⟩
⟨y, by
suffices y ≠ ↑n by
apply Or.elim (Nat.lt_or_eq_of_lt y.isLt)
· simp
· intro hy
rw [← Fin.val_ne_iff] at this
refine absurd ?_ this
rw [hy]
simp only [Fin.coe_ofNat_eq_mod]
exact Eq.symm (Nat.mod_succ_eq_iff_lt.mpr (by simp))
by_contra ny
have hp₁ : f' fin_p = f' ⟨↑x, hxm⟩ := by
rw [show f' fin_p = n by simp, ← ny]
have hp₂ := Fin.val_eq_of_eq (hf'_inj hp₁)
exact (lt_self_iff_false ↑x).mp $ calc ↑x
_ < nat_p := x.isLt
_ = ↑fin_p := by simp
_ = ↑x := hp₂⟩
have hg_inj : Function.Injective g := by
intro x₁ x₂ hg
simp only [Fin.mk.injEq] at hg
rw [if_neg (Nat.ne_of_lt x₁.isLt), if_neg (Nat.ne_of_lt x₂.isLt)] at hg
let x₁m : Fin m := ⟨↑x₁, calc ↑x₁
_ < nat_p := x₁.isLt
_ < m := hnat_p_lt_m⟩
let x₂m : Fin m := ⟨↑x₂, calc ↑x₂
_ < nat_p := x₂.isLt
_ < m := hnat_p_lt_m⟩
by_cases hx₁ : x₁m = fin_t
· by_cases hx₂ : x₂m = fin_t
· rw [Fin.ext_iff] at hx₁ hx₂ ⊢
rw [show x₁.1 = x₁m.1 from rfl, show x₂.1 = x₂m.1 from rfl, hx₁, hx₂]
· rw [if_pos hx₁, if_neg hx₂, ← Fin.ext_iff] at hg
have := hf_inj hg
rw [Fin.ext_iff] at this
exact absurd this.symm (Nat.ne_of_lt x₂.isLt)
· by_cases hx₂ : x₂m = fin_t
· rw [if_neg hx₁, if_pos hx₂, ← Fin.ext_iff] at hg
have := hf_inj hg
rw [Fin.ext_iff] at this
exact absurd this (Nat.ne_of_lt x₁.isLt)
· rw [if_neg hx₁, if_neg hx₂, ← Fin.ext_iff] at hg
have := hf_inj hg
simp only [Fin.mk.injEq] at this
exact Fin.ext_iff.mpr this
have ng_surj : ¬ Function.Surjective g := ih nat_p (calc nat_p
_ < m := hnat_p_lt_m
_ ≤ n := Nat.lt_succ.mp hm) g hg_inj
-- We have shown `g` isn't surjective. This is another way of saying that.
have ⟨a, ha⟩ : ∃ a, a ∉ Set.range g := by
unfold Function.Surjective at ng_surj
unfold Set.range
simp only [not_forall, not_exists] at ng_surj
have ⟨a, ha₁⟩ := ng_surj
simp only [Fin.mk.injEq] at ha₁
refine ⟨a, ?_⟩
intro ha₂
simp only [Fin.mk.injEq, Set.mem_setOf_eq] at ha₂
have ⟨y, hy⟩ := ha₂
exact absurd hy (ha₁ y)
-- By construction, if `g` isn't surjective then neither is `f'`.
have hf'a : ↑a ∉ Set.range f' := by
-- It suffices to prove that `f'` and `g` agree on all values found in
-- `g`'s domain. The only input that complicates things is `p`, which is
-- found in the domains of `f'` and `f`. So long as we can prove
-- `f' p ≠ a`, then we can be sure `a` appears nowhere in `ran f'`.
suffices ∀ x : Fin m, (ht : x < fin_p) → f' x = g ⟨x, ht⟩ by
unfold Set.range
simp only [Set.mem_setOf_eq, not_exists]
intro x
by_cases hp : x = fin_p
· intro nx
rw [if_pos hp, Fin.ext_iff] at nx
simp only [
Fin.coe_ofNat_eq_mod,
Fin.coe_eq_castSucc,
Fin.coe_castSucc
] at nx
rw [Nat.mod_succ_eq_iff_lt.mpr (show n < n + 1 by simp)] at nx
exact absurd nx (Nat.ne_of_lt a.isLt).symm
· show f' x ≠ ↑↑a
rw [show ¬x = fin_p ↔ x ≠ fin_p from Iff.rfl, ← Fin.val_ne_iff] at hp
-- Apply our `suffice` hypothesis.
have hx_lt_fin_p : x < fin_p := by
refine Or.elim (Nat.lt_or_eq_of_lt $ calc ↑x
_ < m := x.isLt
_ = nat_p + 1 := hnat_p) id ?_
intro hxp
exact absurd hxp hp
rw [this x hx_lt_fin_p]
have ha₁ : ¬∃ y, g y = a := ha
simp only [not_exists] at ha₁
have ha₂ : g ⟨↑x, _⟩ ≠ a :=
ha₁ ⟨↑x, by rwa [Fin.lt_iff_val_lt_val] at hx_lt_fin_p⟩
norm_cast at ha₂ ⊢
intro nx
exact absurd (Fin.castSucc_injective n nx) ha₂
intro t ht
rw [Fin.ext_iff]
simp only [Fin.coe_ofNat_eq_mod]
generalize (
if t = fin_p then ↑n
else if t = fin_t then f fin_p
else f t
) = y
exact (Nat.mod_succ_eq_iff_lt.mpr y.isLt).symm
-- Likewise, if `f'` isn't surjective then neither is `f`.
have hfa : ↑a ∉ Set.range f := by
suffices Set.range f = Set.range f' by rw [this]; exact hf'a
unfold Set.range
ext x
apply Iff.intro
· intro ⟨y, hy⟩
simp only [Set.mem_setOf_eq]
by_cases hx₁ : x = n
· refine ⟨fin_p, ?_⟩
simp only [ite_self, ite_true]
exact hx₁.symm
· by_cases hx₂ : x = ⟨f fin_p, (f fin_p).isLt⟩
· refine ⟨fin_t, ?_⟩
by_cases ht : fin_t = fin_p
· rw [if_pos ht, hx₂]
rw [ht] at hfin_t
exact hfin_t.symm
· rw [if_neg ht, if_pos rfl, hx₂]
· refine ⟨y, ?_⟩
have hy₁ : y ≠ fin_p := by
by_contra ny
rw [ny] at hy
exact absurd hy.symm hx₂
have hy₂ : y ≠ fin_t := by
by_contra ny
rw [ny, hfin_t] at hy
exact absurd hy.symm hx₁
rw [if_neg hy₁, if_neg hy₂]
exact hy
· intro ⟨y, hy⟩
dsimp only at hy
by_cases hy₁ : y = fin_p
· rw [if_pos hy₁] at hy
have := hf_surj ⟨n, show n < n + 1 by simp⟩
rwa [← hy]
· rw [if_neg hy₁] at hy
by_cases hy₂ : y = fin_t
· rw [if_pos hy₂] at hy
exact ⟨fin_p, hy⟩
· rw [if_neg hy₂] at hy
exact ⟨y, hy⟩
simp only [Fin.coe_eq_castSucc, Set.mem_setOf_eq] at hfa
exact absurd (hf_surj $ Fin.castSucc a) hfa
/-- #### Corollary 6C
No finite set is equinumerous to a proper subset of itself.
-/
theorem corollary_6c (S S' : Finset α) (hS : S' ⊂ S)
: ∀ f : S → S', ¬ Function.Bijective f := by
sorry
/-- #### Corollary 6D (a)
Any set equinumerous to a proper subset of itself is infinite.
-/
theorem corollary_6d_a (S S' : Set α) (hS : S' ⊂ S) (hf : S' ≃ S)
: Set.Infinite S := by
sorry
/-- #### Corollary 6D (b)
The set `ω` is infinite.
-/
theorem corollary_6d_b
: Set.Infinite (@Set.univ ) := by
sorry
/-- #### Corollary 6E
Any finite set is equinumerous to a unique natural number.
-/
theorem corollary_6e (S : Set α) (hn : S ≃ Fin n) (hm : S ≃ Fin m)
: m = n := by
sorry
/-- #### Lemma 6F
If `C` is a proper subset of a natural number `n`, then `C ≈ m` for some `m`
less than `n`.
-/
lemma lemma_6f {n : } (hC : C ⊂ Finset.range n)
: ∃ m : , m < n ∧ ∃ f : C → Fin m, Function.Bijective f := by
sorry
theorem corollary_6g (S S' : Set α) (hS : Finite S) (hS' : S' ⊆ S)
: Finite S' := by
sorry
/-- #### Exercise 6.1
Show that the equation
```
f(m, n) = 2ᵐ(2n + 1) - 1
```
defines a one-to-one correspondence between `ω × ω` and `ω`.
-/
theorem exercise_6_1
: Function.Bijective (fun p : × => 2 ^ p.1 * (2 * p.2 + 1) - 1) := by
sorry
/-- #### Exercise 6.2
Show that in Fig. 32 we have:
```
J(m, n) = [1 + 2 + ⋯ + (m + n)] + m
= (1 / 2)[(m + n)² + 3m + n].
```
-/
theorem exercise_6_2
: Function.Bijective
(fun p : × => (1 / 2) * ((p.1 + p.2) ^ 2 + 3 * p.1 + p.2)) := by
sorry
/-- #### Exercise 6.3
Find a one-to-one correspondence between the open unit interval `(0, 1)` and ``
that takes rationals to rationals and irrationals to irrationals.
-/
theorem exercise_6_3
: True := by
sorry
/-- #### Exercise 6.4
Construct a one-to-one correspondence between the closed unit interval
```
[0, 1] = {x ∈ | 0 ≤ x ≤ 1}
```
and the open unit interval `(0, 1)`.
-/
theorem exercise_6_4
: ∃ F, Set.BijOn F (Set.Ioo 0 1) (@Set.univ ) := by
sorry
end Enderton.Set.Chapter_6