Enderton (set). Begin chapter 6 exercises.

finite-set-exercises
Joshua Potter 2023-08-16 12:46:16 -06:00
parent 94550ab43e
commit 8f833f9353
5 changed files with 169 additions and 27 deletions

View File

@ -2,5 +2,6 @@ import Bookshelf.Enderton.Set.Chapter_1
import Bookshelf.Enderton.Set.Chapter_2
import Bookshelf.Enderton.Set.Chapter_3
import Bookshelf.Enderton.Set.Chapter_4
import Bookshelf.Enderton.Set.Chapter_6
import Bookshelf.Enderton.Set.OrderedPair
import Bookshelf.Enderton.Set.Relation

View File

@ -127,8 +127,8 @@
\section{\defined{Equinumerous}}%
\hyperlabel{ref:equinumerous}
A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
only if there is a one-to-one \nameref{ref:function} from $A$ onto $B$.
A set $A$ is \textbf{equinumerous} to a set $B$ (written $\equinumerous{A}{B}$)
if and only if there is a one-to-one \nameref{ref:function} from $A$ onto $B$.
\lean*{Mathlib/Init/Function}
{Function.Bijective}
@ -215,14 +215,26 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
only one $x$ such that $xFy$.
One-to-one functions are sometimes called \textbf{injections}.
\lean*{Mathlib/Init/Function}
{Function.Injective}
\code*{Bookshelf/Enderton/Set/Relation}
{Set.Relation.isSingleValued}
\lean{Mathlib/Init/Function}
{Function.Surjective}
\code{Bookshelf/Enderton/Set/Relation}
{Set.Relation.isSingleRooted}
\lean{Mathlib/Init/Function}
{Function.Bijective}
\code{Bookshelf/Enderton/Set/Relation}
{Set.Relation.isOneToOne}
\lean{Mathlib/Data/Set/Function}
{Set.MapsTo}
\lean{Mathlib/Data/Set/Function}
{Set.InjOn}
\lean{Mathlib/Data/Set/Function}
{Set.SurjOn}
\lean{Mathlib/Data/Set/Function}
{Set.BijOn}
\section{\defined{Image}}%
\hyperlabel{ref:image}
@ -2863,11 +2875,10 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
\end{proof}
\subsection{\verified{Lemma 1}}%
\hyperlabel{sub:lemma-1}
\subsection{\verified{One-to-One Inverse}}%
\hyperlabel{sub:one-to-one-inverse}
\begin{lemma}[1]
\begin{lemma}
For any one-to-one function $F$, $F^{-1}$ is also one-to-one.
\end{lemma}
@ -2992,6 +3003,43 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
\end{proof}
\subsection{\verified{One-to-One Composition}}%
\hyperlabel{sub:one-to-one-composition}
\begin{lemma}
Let $F$ and $G$ be one-to-one functions.
Then $F \circ G$ is one-to-one as well.
\end{lemma}
\code{Bookshelf/Enderton/Set/Relation}
{Set.Relation.one\_to\_one\_comp\_is\_one\_to\_one}
\begin{proof}
Let $F \colon B \rightarrow C$ and $G \colon A \rightarrow B$ be
one-to-one \nameref{ref:function}s from sets $A$, $B$, and $C$.
By definition of the \nameref{ref:composition} of functions,
\begin{equation}
\hyperlabel{sub:one-to-one-composition-eq1}
F \circ G = \{\tuple{u, v} \mid \exists t(uGt \land tFv)\}.
\end{equation}
By \nameref{sub:theorem-3h}, $F \circ G$ is a function.
All that remains is proving $F \circ G$ is single-valued, i.e. for each
$y \in \ran{F \circ G}$, there is only one $x$ such that
$\tuple{x, y} \in F \circ G$.
To that end let $y \in \ran{(F \circ G)}$.
Then there exists some $x_1 \in \dom{(F \circ G)}$ such that
$\tuple{x_1, y} \in F \circ G$.
Suppose there also exists some $x_2 \in \dom{(F \circ G)}$ such that
$\tuple{x_2, y} \in F \circ G$.
By \eqref{sub:one-to-one-composition-eq1}, there exists a $t_1$ such that
$x_1Gt_1$ and $t_1Fy$.
Likewise, there exists some $t_2$ such that $x_2Gt_2$ and $t_2Fy$.
But $F$ is one-to-one meaning $t_1 = t_2$.
Similarly, $G$ is one-to-one meaning $x_1 = x_2$.
Hence $F \circ G$ is single-valued.
\end{proof}
\subsection{\verified{Theorem 3I}}%
\hyperlabel{sub:theorem-3i}
@ -6232,11 +6280,10 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
\end{proof}
\subsection{\verified{Lemma 2}}%
\hyperlabel{sub:lemma-2}
\hyperlabel{sub:succ-add-eq-add-succ}
\subsection{\verified{Successor Commutativity}}%
\hyperlabel{sub:successor-commutativity}
\begin{lemma}[2]
\begin{lemma}
For all $m, n \in \omega$, $A_{m^+}(n) = A_m(n^+)$.
In other words, $$m^+ + n = m + n^+.$$
\end{lemma}
@ -6314,13 +6361,13 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
Then
\begin{align*}
m^+ + (n + p)
& = m + (n + p)^+ & \textref{sub:succ-add-eq-add-succ} \\
& = m + (n + p)^+ & \textref{sub:successor-commutativity} \\
& = (m + (n + p))^+ & \textref{sub:theorem-4i} \\
& = ((m + n) + p)^+ & \eqref{sub:theorem-4k-1-eq1} \\
& = (m + n) + p^+ & \textref{sub:theorem-4i} \\
& = (m + n)^+ + p & \textref{sub:succ-add-eq-add-succ} \\
& = (m + n)^+ + p & \textref{sub:successor-commutativity} \\
& = (m + n^+) + p & \textref{sub:theorem-4i} \\
& = (m^+ + n) + p. & \textref{sub:succ-add-eq-add-succ}
& = (m^+ + n) + p. & \textref{sub:successor-commutativity}
\end{align*}
Thus $m^+ \in S$.
@ -6371,7 +6418,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
Then
\begin{align*}
m^+ + n
& = m + n^+ & \textref{sub:succ-add-eq-add-succ} \\
& = m + n^+ & \textref{sub:successor-commutativity} \\
& = (m + n)^+ & \textref{sub:theorem-4i} \\
& = (n + m)^+ & \eqref{sub:theorem-4k-2-eq1} \\
& = n + m^+. & \textref{sub:theorem-4i}
@ -6479,7 +6526,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
& = m^+ \cdot n + m^+ & \textref{sub:theorem-4j} \\
& = (m \cdot n + n) + m^+ & \eqref{sub:successor-distribution-eq1} \\
& = m \cdot n + (n + m^+) & \textref{sub:theorem-4k-1} \\
& = m \cdot n + (n^+ + m) & \textref{sub:succ-add-eq-add-succ} \\
& = m \cdot n + (n^+ + m) & \textref{sub:successor-commutativity} \\
& = m \cdot n + (m + n^+) & \textref{sub:theorem-4k-2} \\
& = (m \cdot n + m) + n^+ & \textref{sub:theorem-4k-1} \\
& = m \cdot n^+ + n^+. & \textref{sub:theorem-4j}
@ -6597,7 +6644,7 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
Then
\begin{align*}
m^+ + 1
& = m + 1^+ & \textref{sub:succ-add-eq-add-succ} \\
& = m + 1^+ & \textref{sub:successor-commutativity} \\
& = (m + 1)^+ & \textref{sub:theorem-4i} \\
& = (m^+)^+. & \eqref{sub:successor-identity-eq1}
\end{align*}
@ -8395,20 +8442,55 @@ A set $A$ is \textbf{equinumerous} to a set $B$ (written $A \approx B$) if and
\section{Equinumerosity}%
\hyperlabel{sec:equinumerosity}
\subsection{\sorry{Theorem 6A}}%
\subsection{\verified{Theorem 6A}}%
\hyperlabel{sub:theorem-6a}
\begin{theorem}[6A]
For any sets $A$, $B$, and $C$,
\begin{enumerate}[(a)]
\item $A \approx A$.
\item If $A \approx B$, then $B \approx A$.
\item If $A \approx B$ and $B \approx C$, then $A \approx C$.
\item $\equinumerous{A}{A}$.
\item If $\equinumerous{A}{B}$, then $\equinumerous{B}{A}$.
\item If $\equinumerous{A}{B}$ and $\equinumerous{B}{C}$, then
$\equinumerous{A}{C}$.
\end{enumerate}
\end{theorem}
\code{Bookshelf/Enderton/Set/Chapter\_6}
{Enderton.Set.Chapter\_6.theorem\_6a\_a}
\code{Bookshelf/Enderton/Set/Chapter\_6}
{Enderton.Set.Chapter\_6.theorem\_6a\_b}
\code{Bookshelf/Enderton/Set/Chapter\_6}
{Enderton.Set.Chapter\_6.theorem\_6a\_c}
\begin{proof}
TODO
Let $A$, $B$, and $C$ be arbitrary sets.
\paragraph{(a)}%
Consider function $I_A \colon A \rightarrow A$ given by $I_A(x) = x$.
This function is trivially a bijection between $A$ and $A$.
Thus $A$ is \nameref{ref:equinumerous} to $A$.
\paragraph{(b)}%
Suppose $\equinumerous{A}{B}$.
Then there exists a one-to-one function $f \colon A \rightarrow B$.
By \nameref{sub:one-to-one-inverse}, $f^{-1} \colon B \rightarrow A$
is also one-to-one.
Thus $\equinumerous{B}{A}$.
\paragraph{(c)}%
Suppose $\equinumerous{A}{B}$ and $\equinumerous{B}{C}$.
Then there exist one-to-one functions $f \colon A \rightarrow B$ and
$g \colon B \rightarrow C$.
Then, by \nameref{sub:one-to-one-composition},
$g \circ f \colon A \rightarrow C$ is one-to-one.
Thus $\equinumerous{A}{C}$.
\end{proof}
\subsection{\sorry{Theorem 6B}}%

View File

@ -0,0 +1,39 @@
import Mathlib.Data.Set.Function
import Mathlib.Data.Rel
/-! # Enderton.Set.Chapter_6
Cardinal Numbers and the Axiom of Choice
-/
namespace Enderton.Set.Chapter_6
/-! #### Theorem 6A
For any sets `A`, `B`, and `C`,
(a) `A ≈ A`.
(b) If `A ≈ B`, then `B ≈ A`.
(c) If `A ≈ B` and `B ≈ C`, then `A ≈ C`.
-/
theorem theorem_6a_a (A : Set α)
: ∃ f, Set.BijOn f A A := by
refine ⟨fun x => x, ?_⟩
unfold Set.BijOn Set.MapsTo Set.InjOn Set.SurjOn
simp only [imp_self, implies_true, Set.image_id', true_and]
exact Eq.subset rfl
theorem theorem_6a_b [Nonempty α] (A : Set α) (B : Set β)
(f : α → β) (hf : Set.BijOn f A B)
: ∃ g, Set.BijOn g B A := by
refine ⟨Function.invFunOn f A, ?_⟩
exact (Set.bijOn_comm $ Set.BijOn.invOn_invFunOn hf).mpr hf
theorem theorem_6a_c (A : Set α) (B : Set β) (C : Set γ)
(f : α → β) (hf : Set.BijOn f A B)
(g : β → γ) (hg : Set.BijOn g B C)
: ∃ h, Set.BijOn h A C := by
exact ⟨g ∘ f, Set.BijOn.comp hg hf⟩
end Enderton.Set.Chapter_6

View File

@ -440,6 +440,26 @@ theorem single_valued_comp_is_single_valued
have hk₂ := hy'.right y₁ (mem_pair_imp_snd_mem_ran ht₂.right) ht₂.right
rw [hk₁, hk₂]
/--
The composition of two one-to-one `Relation`s is one-to-one.
-/
theorem one_to_one_comp_is_one_to_one
{F : HRelation β γ} {G : HRelation α β}
(hF : isOneToOne F) (hG : isOneToOne G)
: isOneToOne (comp F G) := by
refine ⟨single_valued_comp_is_single_valued hF.left hG.left, ?_⟩
intro y hy
unfold ExistsUnique
have ⟨x₁, hx₁⟩ := ran_exists hy
refine ⟨x₁, ⟨mem_pair_imp_fst_mem_dom hx₁, hx₁⟩, ?_⟩
intro x₂ ⟨_, hx₂⟩
have ⟨t₁, ht₁⟩ := hx₁
have ⟨t₂, ht₂⟩ := hx₂
simp only at ht₁ ht₂
have ht : t₁ = t₂ := single_rooted_eq_unique hF.right ht₁.right ht₂.right
rw [ht] at ht₁
exact single_rooted_eq_unique hG.right ht₂.left ht₁.left
/--
For `Relation`s `F` and `G`, `(F ∘ G)⁻¹ = G⁻¹ ∘ F⁻¹`.
-/

View File

@ -168,6 +168,7 @@
\newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
\newcommand{\ctuple}[2]{\left< #1, \cdots, #2 \right>}
\newcommand{\dom}[1]{\textop{dom}{#1}}
\newcommand{\equinumerous}[2]{#1 \approx #2}
\newcommand{\fld}[1]{\textop{fld}{#1}}
\newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
\newcommand{\icc}[2]{\left[#1, #2\right]}
@ -180,7 +181,6 @@
\newcommand{\ran}[1]{\textop{ran}{#1}}
\newcommand{\textop}[1]{\mathop{\text{#1}}}
\newcommand{\tuple}[1]{\left< #1 \right>}
\newcommand{\ubar}[1]{\text{\b{$#1$}}}
\let\oldemptyset\emptyset