2023-09-17 18:07:24 +00:00
|
|
|
|
import Bookshelf.Enderton.Set.Chapter_4
|
2023-09-14 15:00:28 +00:00
|
|
|
|
import Common.Logic.Basic
|
|
|
|
|
import Common.Nat.Basic
|
2023-09-14 19:50:22 +00:00
|
|
|
|
import Common.Set.Basic
|
2023-09-17 18:07:24 +00:00
|
|
|
|
import Common.Set.Equinumerous
|
|
|
|
|
import Common.Set.Intervals
|
2023-09-14 19:50:22 +00:00
|
|
|
|
import Mathlib.Data.Finset.Card
|
2023-08-24 00:23:28 +00:00
|
|
|
|
import Mathlib.Data.Set.Finite
|
2023-09-14 19:50:22 +00:00
|
|
|
|
import Mathlib.Tactic.LibrarySearch
|
2023-08-16 18:46:16 +00:00
|
|
|
|
|
|
|
|
|
/-! # Enderton.Set.Chapter_6
|
|
|
|
|
|
|
|
|
|
Cardinal Numbers and the Axiom of Choice
|
|
|
|
|
|
2023-09-14 19:50:22 +00:00
|
|
|
|
NOTE: We choose to use injectivity/surjectivity concepts found in
|
|
|
|
|
`Mathlib.Data.Set.Function` over those in `Mathlib.Init.Function` since the
|
|
|
|
|
former provides noncomputable utilities around obtaining inverse functions
|
|
|
|
|
(namely `Function.invFunOn`).
|
2023-08-16 18:46:16 +00:00
|
|
|
|
-/
|
|
|
|
|
|
2023-09-14 19:50:22 +00:00
|
|
|
|
namespace Enderton.Set.Chapter_6
|
2023-08-16 18:46:16 +00:00
|
|
|
|
|
2023-08-24 00:23:28 +00:00
|
|
|
|
/-- #### Theorem 6B
|
|
|
|
|
|
|
|
|
|
No set is equinumerous to its powerset.
|
|
|
|
|
-/
|
|
|
|
|
theorem theorem_6b (A : Set α)
|
2023-09-17 18:07:24 +00:00
|
|
|
|
: A ≉ 𝒫 A := by
|
|
|
|
|
rw [Set.not_equinumerous_def]
|
2023-08-24 00:23:28 +00:00
|
|
|
|
intro f hf
|
|
|
|
|
unfold Set.BijOn at hf
|
|
|
|
|
let φ := { a ∈ A | a ∉ f a }
|
|
|
|
|
suffices ∀ a ∈ A, f a ≠ φ by
|
|
|
|
|
have hφ := hf.right.right (show φ ∈ 𝒫 A by simp)
|
|
|
|
|
have ⟨a, ha⟩ := hφ
|
|
|
|
|
exact absurd ha.right (this a ha.left)
|
|
|
|
|
intro a ha hfa
|
|
|
|
|
by_cases h : a ∈ f a
|
|
|
|
|
· have h' := h
|
|
|
|
|
rw [hfa] at h
|
|
|
|
|
simp only [Set.mem_setOf_eq] at h
|
|
|
|
|
exact absurd h' h.right
|
|
|
|
|
· rw [Set.Subset.antisymm_iff] at hfa
|
|
|
|
|
have := hfa.right ⟨ha, h⟩
|
|
|
|
|
exact absurd this h
|
|
|
|
|
|
2023-09-14 19:50:22 +00:00
|
|
|
|
/-! ### Pigeonhole Principle -/
|
2023-08-24 00:23:28 +00:00
|
|
|
|
|
2023-09-14 19:50:22 +00:00
|
|
|
|
/--
|
|
|
|
|
A subset of a finite set of natural numbers has a max member.
|
|
|
|
|
-/
|
|
|
|
|
lemma subset_finite_max_nat {S' S : Set ℕ}
|
|
|
|
|
(hS : Set.Finite S) (hS' : Set.Nonempty S') (h : S' ⊆ S)
|
|
|
|
|
: ∃ m, m ∈ S' ∧ ∀ n, n ∈ S' → n ≤ m := by
|
|
|
|
|
have ⟨m, hm₁, hm₂⟩ :=
|
|
|
|
|
Set.Finite.exists_maximal_wrt id S' (Set.Finite.subset hS h) hS'
|
|
|
|
|
simp only [id_eq] at hm₂
|
|
|
|
|
refine ⟨m, hm₁, ?_⟩
|
|
|
|
|
intro n hn
|
|
|
|
|
match @trichotomous ℕ LT.lt _ m n with
|
|
|
|
|
| Or.inr (Or.inl r) => exact Nat.le_of_eq r.symm
|
|
|
|
|
| Or.inl r =>
|
|
|
|
|
have := hm₂ n hn (Nat.le_of_lt r)
|
|
|
|
|
exact Nat.le_of_eq this.symm
|
|
|
|
|
| Or.inr (Or.inr r) => exact Nat.le_of_lt r
|
|
|
|
|
|
|
|
|
|
/--
|
|
|
|
|
Auxiliary function to be proven by induction.
|
2023-08-24 00:23:28 +00:00
|
|
|
|
-/
|
2023-09-14 16:00:39 +00:00
|
|
|
|
lemma pigeonhole_principle_aux (n : ℕ)
|
2023-09-14 19:50:22 +00:00
|
|
|
|
: ∀ M, M ⊂ Set.Iio n →
|
|
|
|
|
∀ f : ℕ → ℕ,
|
|
|
|
|
Set.MapsTo f M (Set.Iio n) ∧ Set.InjOn f M →
|
|
|
|
|
¬ Set.SurjOn f M (Set.Iio n) := by
|
2023-08-24 13:50:47 +00:00
|
|
|
|
induction n with
|
|
|
|
|
| zero =>
|
2023-09-14 19:50:22 +00:00
|
|
|
|
intro _ hM
|
|
|
|
|
unfold Set.Iio at hM
|
|
|
|
|
simp only [Nat.zero_eq, not_lt_zero', Set.setOf_false] at hM
|
|
|
|
|
rw [Set.ssubset_empty_iff_false] at hM
|
|
|
|
|
exact False.elim hM
|
2023-08-24 13:50:47 +00:00
|
|
|
|
| succ n ih =>
|
2023-09-14 19:50:22 +00:00
|
|
|
|
intro M hM f ⟨hf_maps, hf_inj⟩ hf_surj
|
|
|
|
|
|
|
|
|
|
by_cases hM' : M = ∅
|
|
|
|
|
· unfold Set.SurjOn at hf_surj
|
|
|
|
|
rw [hM'] at hf_surj
|
|
|
|
|
simp only [Set.image_empty] at hf_surj
|
|
|
|
|
rw [Set.subset_def] at hf_surj
|
|
|
|
|
exact hf_surj n (show n < n + 1 by simp)
|
|
|
|
|
|
|
|
|
|
by_cases h : ¬ ∃ t, t ∈ M ∧ f t = n
|
2023-09-14 15:00:28 +00:00
|
|
|
|
-- Trivial case. `f` must not be onto if this is the case.
|
2023-09-14 19:50:22 +00:00
|
|
|
|
· have ⟨t, ht⟩ := hf_surj (show n ∈ _ by simp)
|
|
|
|
|
exact absurd ⟨t, ht⟩ h
|
2023-09-14 15:00:28 +00:00
|
|
|
|
|
|
|
|
|
-- Continue under the assumption `n ∈ ran f`.
|
2023-09-14 19:50:22 +00:00
|
|
|
|
simp only [not_not] at h
|
|
|
|
|
have ⟨t, ht₁, ht₂⟩ := h
|
|
|
|
|
|
|
|
|
|
-- `M ≠ ∅` so `∃ p, ∀ x ∈ M, p ≥ x`.
|
|
|
|
|
have ⟨p, hp₁, hp₂⟩ : ∃ p ∈ M, ∀ x, x ∈ M → p ≥ x := by
|
|
|
|
|
refine subset_finite_max_nat (show Set.Finite M from ?_) ?_ ?_
|
|
|
|
|
· have := Set.finite_lt_nat (n + 1)
|
|
|
|
|
exact Set.Finite.subset this (subset_of_ssubset hM)
|
|
|
|
|
· exact Set.nmem_singleton_empty.mp hM'
|
|
|
|
|
· show ∀ t, t ∈ M → t ∈ M
|
|
|
|
|
simp only [imp_self, forall_const]
|
|
|
|
|
|
|
|
|
|
-- `g` is a variant of `f` in which the largest element of its domain
|
2023-09-14 15:00:28 +00:00
|
|
|
|
-- (i.e. `p`) corresponds to value `n`.
|
2023-09-14 19:50:22 +00:00
|
|
|
|
let g x := if x = p then n else if x = t then f p else f x
|
|
|
|
|
|
|
|
|
|
have hg_maps : Set.MapsTo g M (Set.Iio (n + 1)) := by
|
|
|
|
|
intro x hx
|
|
|
|
|
dsimp only
|
|
|
|
|
by_cases hx₁ : x = p
|
|
|
|
|
· rw [hx₁]
|
|
|
|
|
simp
|
|
|
|
|
· rw [if_neg hx₁]
|
|
|
|
|
by_cases hx₂ : x = t
|
|
|
|
|
· rw [hx₂]
|
|
|
|
|
simp only [ite_true, Set.mem_Iio]
|
|
|
|
|
exact hf_maps hp₁
|
|
|
|
|
· rw [if_neg hx₂]
|
|
|
|
|
simp only [Set.mem_Iio]
|
|
|
|
|
exact hf_maps hx
|
|
|
|
|
|
|
|
|
|
have hg_inj : Set.InjOn g M := by
|
|
|
|
|
intro x₁ hx₁ x₂ hx₂ hf'
|
|
|
|
|
by_cases hc₁ : x₁ = p
|
|
|
|
|
· by_cases hc₂ : x₂ = p
|
|
|
|
|
· rw [hc₁, hc₂]
|
|
|
|
|
· dsimp at hf'
|
|
|
|
|
rw [hc₁] at hf'
|
2023-09-14 15:00:28 +00:00
|
|
|
|
simp only [ite_self, ite_true] at hf'
|
2023-09-14 19:50:22 +00:00
|
|
|
|
by_cases hc₃ : x₂ = t
|
|
|
|
|
· rw [if_neg hc₂, if_pos hc₃, ← ht₂] at hf'
|
|
|
|
|
rw [hc₁] at hx₁ ⊢
|
|
|
|
|
rw [hc₃] at hx₂ ⊢
|
|
|
|
|
exact hf_inj hx₁ hx₂ hf'.symm
|
|
|
|
|
· rw [if_neg hc₂, if_neg hc₃, ← ht₂] at hf'
|
|
|
|
|
have := hf_inj ht₁ hx₂ hf'
|
|
|
|
|
exact absurd this.symm hc₃
|
|
|
|
|
· by_cases hc₂ : x₂ = p
|
|
|
|
|
· rw [hc₂] at hf'
|
2023-09-14 15:00:28 +00:00
|
|
|
|
simp only [ite_self, ite_true] at hf'
|
2023-09-14 19:50:22 +00:00
|
|
|
|
by_cases hc₃ : x₁ = t
|
|
|
|
|
· rw [if_neg hc₁, if_pos hc₃, ← ht₂] at hf'
|
|
|
|
|
rw [hc₃] at hx₁ ⊢
|
|
|
|
|
rw [hc₂] at hx₂ ⊢
|
|
|
|
|
have := hf_inj hx₂ hx₁ hf'
|
|
|
|
|
exact this.symm
|
|
|
|
|
· rw [if_neg hc₁, if_neg hc₃, ← ht₂] at hf'
|
|
|
|
|
have := hf_inj hx₁ ht₁ hf'
|
|
|
|
|
exact absurd this hc₃
|
2023-09-14 15:00:28 +00:00
|
|
|
|
· dsimp only at hf'
|
2023-09-14 19:50:22 +00:00
|
|
|
|
rw [if_neg hc₁, if_neg hc₂] at hf'
|
|
|
|
|
by_cases hc₃ : x₁ = t
|
|
|
|
|
· by_cases hc₄ : x₂ = t
|
|
|
|
|
· rw [hc₃, hc₄]
|
|
|
|
|
· rw [if_pos hc₃, if_neg hc₄] at hf'
|
|
|
|
|
have := hf_inj hp₁ hx₂ hf'
|
|
|
|
|
exact absurd this.symm hc₂
|
|
|
|
|
· by_cases hc₄ : x₂ = t
|
|
|
|
|
· rw [if_neg hc₃, if_pos hc₄] at hf'
|
|
|
|
|
have := hf_inj hx₁ hp₁ hf'
|
|
|
|
|
exact absurd this hc₁
|
|
|
|
|
· rw [if_neg hc₃, if_neg hc₄] at hf'
|
|
|
|
|
exact hf_inj hx₁ hx₂ hf'
|
|
|
|
|
|
|
|
|
|
let M' := M \ {p}
|
|
|
|
|
have hM' : M' ⊂ Set.Iio n := by
|
|
|
|
|
by_cases hc : p = n
|
|
|
|
|
· suffices Set.Iio (n + 1) \ {n} = Set.Iio n by
|
|
|
|
|
have h₁ := Set.diff_ssubset_diff_left hM hp₁
|
|
|
|
|
conv at h₁ => right; rw [hc]
|
|
|
|
|
rwa [← this]
|
|
|
|
|
ext x
|
|
|
|
|
apply Iff.intro
|
|
|
|
|
· intro hx₁
|
|
|
|
|
refine Or.elim (Nat.lt_or_eq_of_lt hx₁.left) (by simp) ?_
|
|
|
|
|
intro hx₂
|
|
|
|
|
rw [hx₂] at hx₁
|
|
|
|
|
simp at hx₁
|
|
|
|
|
· intro hx₁
|
|
|
|
|
exact ⟨Nat.lt_trans hx₁ (by simp), Nat.ne_of_lt hx₁⟩
|
|
|
|
|
|
|
|
|
|
have hp_lt_n : p < n := by
|
|
|
|
|
have := subset_of_ssubset hM
|
|
|
|
|
have hp' : p < n + 1 := this hp₁
|
|
|
|
|
exact Or.elim (Nat.lt_or_eq_of_lt hp') id (absurd · hc)
|
|
|
|
|
|
|
|
|
|
rw [Set.ssubset_def]
|
|
|
|
|
apply And.intro
|
|
|
|
|
· show ∀ x, x ∈ M' → x < n
|
|
|
|
|
intro x hx
|
|
|
|
|
simp only [Set.mem_diff, Set.mem_singleton_iff] at hx
|
|
|
|
|
calc x
|
|
|
|
|
_ ≤ p := hp₂ x hx.left
|
|
|
|
|
_ < n := hp_lt_n
|
|
|
|
|
· show ¬ ∀ x, x < n → x ∈ M'
|
|
|
|
|
by_contra np
|
|
|
|
|
have := np p hp_lt_n
|
|
|
|
|
simp at this
|
|
|
|
|
|
|
|
|
|
-- Consider `g = f' - {⟨p, n⟩}`. This restriction will allow us to use
|
|
|
|
|
-- the induction hypothesis to prove `g` isn't surjective.
|
|
|
|
|
have ng_surj : ¬ Set.SurjOn g M' (Set.Iio n) := by
|
|
|
|
|
refine ih _ hM' g ⟨?_, ?_⟩
|
|
|
|
|
· -- `Set.MapsTo g M' (Set.Iio n)`
|
|
|
|
|
intro x hx
|
|
|
|
|
have hx₁ : x ∈ M := Set.mem_of_mem_diff hx
|
|
|
|
|
apply Or.elim (Nat.lt_or_eq_of_lt $ hg_maps hx₁)
|
|
|
|
|
· exact id
|
|
|
|
|
· intro hx₂
|
|
|
|
|
rw [← show g p = n by simp] at hx₂
|
|
|
|
|
exact absurd (hg_inj hx₁ hp₁ hx₂) hx.right
|
|
|
|
|
· -- `Set.InjOn g M'`
|
|
|
|
|
intro x₁ hx₁ x₂ hx₂ hg
|
|
|
|
|
have hx₁' : x₁ ∈ M := (Set.diff_subset M {p}) hx₁
|
|
|
|
|
have hx₂' : x₂ ∈ M := (Set.diff_subset M {p}) hx₂
|
|
|
|
|
exact hg_inj hx₁' hx₂' hg
|
2023-09-14 15:00:28 +00:00
|
|
|
|
|
2023-09-14 19:50:22 +00:00
|
|
|
|
-- We have shown `g` isn't surjective. This is another way of saying that.
|
|
|
|
|
have ⟨a, ha₁, ha₂⟩ : ∃ a, a < n ∧ a ∉ g '' M' := by
|
|
|
|
|
unfold Set.SurjOn at ng_surj
|
|
|
|
|
rw [Set.subset_def] at ng_surj
|
|
|
|
|
simp only [
|
|
|
|
|
Set.mem_Iio,
|
|
|
|
|
Set.mem_image,
|
|
|
|
|
not_forall,
|
|
|
|
|
not_exists,
|
|
|
|
|
not_and,
|
|
|
|
|
exists_prop
|
|
|
|
|
] at ng_surj
|
|
|
|
|
unfold Set.image
|
|
|
|
|
simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and]
|
|
|
|
|
exact ng_surj
|
|
|
|
|
|
|
|
|
|
-- If `g` isn't surjective then neither is `f`.
|
|
|
|
|
refine absurd (hf_surj $ calc a
|
|
|
|
|
_ < n := ha₁
|
|
|
|
|
_ < n + 1 := by simp) (show ↑a ∉ f '' M from ?_)
|
|
|
|
|
|
|
|
|
|
suffices g '' M = f '' M by
|
|
|
|
|
rw [← this]
|
|
|
|
|
show a ∉ g '' M
|
|
|
|
|
unfold Set.image at ha₂ ⊢
|
|
|
|
|
simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and] at ha₂ ⊢
|
|
|
|
|
intro x hx
|
|
|
|
|
by_cases hxp : x = p
|
|
|
|
|
· rw [if_pos hxp]
|
|
|
|
|
exact (Nat.ne_of_lt ha₁).symm
|
|
|
|
|
· refine ha₂ x ?_
|
|
|
|
|
exact Set.mem_diff_of_mem hx hxp
|
|
|
|
|
|
|
|
|
|
ext x
|
|
|
|
|
simp only [Set.mem_image, Set.mem_Iio]
|
|
|
|
|
apply Iff.intro
|
|
|
|
|
· intro ⟨y, hy₁, hy₂⟩
|
|
|
|
|
by_cases hc₁ : y = p
|
|
|
|
|
· rw [if_pos hc₁] at hy₂
|
|
|
|
|
rw [hy₂] at ht₂
|
|
|
|
|
exact ⟨t, ht₁, ht₂⟩
|
|
|
|
|
· rw [if_neg hc₁] at hy₂
|
|
|
|
|
by_cases hc₂ : y = t
|
|
|
|
|
· rw [if_pos hc₂] at hy₂
|
|
|
|
|
exact ⟨p, hp₁, hy₂⟩
|
|
|
|
|
· rw [if_neg hc₂] at hy₂
|
|
|
|
|
exact ⟨y, hy₁, hy₂⟩
|
|
|
|
|
· intro ⟨y, hy₁, hy₂⟩
|
|
|
|
|
by_cases hc₁ : y = p
|
|
|
|
|
· refine ⟨t, ht₁, ?_⟩
|
|
|
|
|
by_cases hc₂ : y = t
|
|
|
|
|
· rw [hc₂, ht₂] at hy₂
|
|
|
|
|
rw [← hc₁, ← hc₂]
|
2023-09-14 15:00:28 +00:00
|
|
|
|
simp only [ite_self, ite_true]
|
2023-09-14 19:50:22 +00:00
|
|
|
|
exact hy₂
|
|
|
|
|
· rw [hc₁, ← Ne.def] at hc₂
|
|
|
|
|
rwa [if_neg hc₂.symm, if_pos rfl, ← hc₁]
|
|
|
|
|
· by_cases hc₂ : y = t
|
|
|
|
|
· refine ⟨p, hp₁, ?_⟩
|
|
|
|
|
simp only [ite_self, ite_true]
|
|
|
|
|
rwa [hc₂, ht₂] at hy₂
|
|
|
|
|
· refine ⟨y, hy₁, ?_⟩
|
|
|
|
|
rwa [if_neg hc₁, if_neg hc₂]
|
|
|
|
|
|
|
|
|
|
/--
|
|
|
|
|
No natural number is equinumerous to a proper subset of itself.
|
|
|
|
|
-/
|
|
|
|
|
theorem pigeonhole_principle {n : ℕ}
|
2023-09-17 18:07:24 +00:00
|
|
|
|
: ∀ {M}, M ⊂ Set.Iio n → M ≉ Set.Iio n := by
|
|
|
|
|
intro M hM nM
|
|
|
|
|
have ⟨f, hf⟩ := nM
|
|
|
|
|
have := pigeonhole_principle_aux n M hM f ⟨hf.left, hf.right.left⟩
|
|
|
|
|
exact absurd hf.right.right this
|
2023-09-14 16:00:39 +00:00
|
|
|
|
|
2023-08-24 00:23:28 +00:00
|
|
|
|
/-- #### Corollary 6C
|
|
|
|
|
|
|
|
|
|
No finite set is equinumerous to a proper subset of itself.
|
|
|
|
|
-/
|
2023-09-17 18:07:24 +00:00
|
|
|
|
theorem corollary_6c [DecidableEq α] [Nonempty α]
|
|
|
|
|
{S S' : Set α} (hS : Set.Finite S) (h : S' ⊂ S)
|
|
|
|
|
: S ≉ S' := by
|
|
|
|
|
let T := S \ S'
|
|
|
|
|
have hT : S = S' ∪ (S \ S') := by
|
|
|
|
|
simp only [Set.union_diff_self]
|
|
|
|
|
exact (Set.left_subset_union_eq_self (subset_of_ssubset h)).symm
|
2023-09-14 19:50:22 +00:00
|
|
|
|
|
|
|
|
|
-- `hF : S' ∪ T ≈ S`.
|
|
|
|
|
-- `hG : S ≈ n`.
|
|
|
|
|
-- `hH : S' ∪ T ≈ n`.
|
2023-09-17 18:07:24 +00:00
|
|
|
|
have hF := Set.equinumerous_refl S
|
|
|
|
|
conv at hF => arg 1; rw [hT]
|
|
|
|
|
have ⟨n, hG⟩ := Set.finite_iff_equinumerous_nat.mp hS
|
2023-09-14 19:50:22 +00:00
|
|
|
|
have ⟨H, hH⟩ := Set.equinumerous_trans hF hG
|
|
|
|
|
|
2023-09-17 18:07:24 +00:00
|
|
|
|
-- Restrict `H` to `S'` to yield a bijection between `S'` and a proper subset
|
|
|
|
|
-- of `n`.
|
2023-09-14 19:50:22 +00:00
|
|
|
|
let R := (Set.Iio n) \ (H '' T)
|
|
|
|
|
have hR : Set.BijOn H S' R := by
|
|
|
|
|
refine ⟨?_, ?_, ?_⟩
|
|
|
|
|
· -- `Set.MapsTo H S' R`
|
|
|
|
|
intro x hx
|
2023-09-17 18:07:24 +00:00
|
|
|
|
refine ⟨hH.left $ Set.mem_union_left T hx, ?_⟩
|
2023-09-14 19:50:22 +00:00
|
|
|
|
unfold Set.image
|
|
|
|
|
by_contra nx
|
|
|
|
|
simp only [Finset.mem_coe, Set.mem_setOf_eq] at nx
|
|
|
|
|
|
|
|
|
|
have ⟨a, ha₁, ha₂⟩ := nx
|
2023-09-17 18:07:24 +00:00
|
|
|
|
have hc₁ : a ∈ S' ∪ T := Set.mem_union_right S' ha₁
|
|
|
|
|
have hc₂ : x ∈ S' ∪ T := Set.mem_union_left T hx
|
2023-09-14 19:50:22 +00:00
|
|
|
|
rw [hH.right.left hc₁ hc₂ ha₂] at ha₁
|
|
|
|
|
|
2023-09-17 18:07:24 +00:00
|
|
|
|
have hx₁ : {x} ⊆ S' := Set.singleton_subset_iff.mpr hx
|
|
|
|
|
have hx₂ : {x} ⊆ T := Set.singleton_subset_iff.mpr ha₁
|
|
|
|
|
have hx₃ := Set.disjoint_sdiff_right hx₁ hx₂
|
2023-09-14 19:50:22 +00:00
|
|
|
|
simp only [
|
2023-09-17 18:07:24 +00:00
|
|
|
|
Set.bot_eq_empty,
|
|
|
|
|
Set.le_eq_subset,
|
|
|
|
|
Set.singleton_subset_iff,
|
|
|
|
|
Set.mem_empty_iff_false
|
|
|
|
|
] at hx₃
|
2023-09-14 19:50:22 +00:00
|
|
|
|
· -- `Set.InjOn H S'`
|
|
|
|
|
intro x₁ hx₁ x₂ hx₂ h
|
2023-09-17 18:07:24 +00:00
|
|
|
|
have hc₁ : x₁ ∈ S' ∪ T := Set.mem_union_left T hx₁
|
|
|
|
|
have hc₂ : x₂ ∈ S' ∪ T := Set.mem_union_left T hx₂
|
2023-09-14 19:50:22 +00:00
|
|
|
|
exact hH.right.left hc₁ hc₂ h
|
|
|
|
|
· -- `Set.SurjOn H S' R`
|
|
|
|
|
show ∀ r, r ∈ R → r ∈ H '' S'
|
|
|
|
|
intro r hr
|
|
|
|
|
unfold Set.image
|
2023-09-17 18:07:24 +00:00
|
|
|
|
simp only [Set.mem_setOf_eq]
|
2023-09-14 19:50:22 +00:00
|
|
|
|
dsimp only at hr
|
|
|
|
|
have := hH.right.right hr.left
|
2023-09-17 18:07:24 +00:00
|
|
|
|
simp only [Set.mem_image, Set.mem_union] at this
|
2023-09-14 19:50:22 +00:00
|
|
|
|
have ⟨x, hx⟩ := this
|
|
|
|
|
apply Or.elim hx.left
|
|
|
|
|
· intro hx'
|
|
|
|
|
exact ⟨x, hx', hx.right⟩
|
|
|
|
|
· intro hx'
|
|
|
|
|
refine absurd ?_ hr.right
|
|
|
|
|
rw [← hx.right]
|
|
|
|
|
simp only [Set.mem_image, Finset.mem_coe]
|
|
|
|
|
exact ⟨x, hx', rfl⟩
|
2023-09-17 18:07:24 +00:00
|
|
|
|
|
|
|
|
|
intro hf
|
|
|
|
|
have hf₁ : S ≈ R := Set.equinumerous_trans hf ⟨H, hR⟩
|
|
|
|
|
have hf₂ : R ≈ Set.Iio n := by
|
|
|
|
|
have ⟨k, hk⟩ := Set.equinumerous_symm hf₁
|
|
|
|
|
exact Set.equinumerous_trans ⟨k, hk⟩ hG
|
2023-09-14 19:50:22 +00:00
|
|
|
|
|
2023-09-17 18:07:24 +00:00
|
|
|
|
refine absurd hf₂ (pigeonhole_principle ?_)
|
2023-09-14 19:50:22 +00:00
|
|
|
|
show R ⊂ Set.Iio n
|
|
|
|
|
apply And.intro
|
|
|
|
|
· show ∀ r, r ∈ R → r ∈ Set.Iio n
|
|
|
|
|
intro _ hr
|
|
|
|
|
exact hr.left
|
|
|
|
|
· show ¬ ∀ r, r ∈ Set.Iio n → r ∈ R
|
|
|
|
|
intro nr
|
2023-09-17 18:07:24 +00:00
|
|
|
|
have ⟨t, ht₁⟩ : Set.Nonempty T := Set.diff_ssubset_nonempty h
|
|
|
|
|
have ht₂ : H t ∈ Set.Iio n := hH.left (Set.mem_union_right S' ht₁)
|
2023-09-14 19:50:22 +00:00
|
|
|
|
have ht₃ : H t ∈ R := nr (H t) ht₂
|
|
|
|
|
exact absurd ⟨t, ht₁, rfl⟩ ht₃.right
|
2023-08-24 00:23:28 +00:00
|
|
|
|
|
|
|
|
|
/-- #### Corollary 6D (a)
|
|
|
|
|
|
|
|
|
|
Any set equinumerous to a proper subset of itself is infinite.
|
|
|
|
|
-/
|
2023-09-17 18:07:24 +00:00
|
|
|
|
theorem corollary_6d_a [DecidableEq α] [Nonempty α]
|
|
|
|
|
{S S' : Set α} (hS : S' ⊂ S) (hf : S ≈ S')
|
2023-08-24 00:23:28 +00:00
|
|
|
|
: Set.Infinite S := by
|
2023-09-17 18:07:24 +00:00
|
|
|
|
by_contra nS
|
|
|
|
|
simp only [Set.not_infinite] at nS
|
|
|
|
|
exact absurd hf (corollary_6c nS hS)
|
2023-08-24 00:23:28 +00:00
|
|
|
|
|
|
|
|
|
/-- #### Corollary 6D (b)
|
|
|
|
|
|
|
|
|
|
The set `ω` is infinite.
|
|
|
|
|
-/
|
|
|
|
|
theorem corollary_6d_b
|
|
|
|
|
: Set.Infinite (@Set.univ ℕ) := by
|
2023-09-17 18:07:24 +00:00
|
|
|
|
let S : Set ℕ := { 2 * n | n ∈ @Set.univ ℕ }
|
|
|
|
|
let f x := 2 * x
|
|
|
|
|
suffices Set.BijOn f (@Set.univ ℕ) S by
|
|
|
|
|
refine corollary_6d_a ?_ ⟨f, this⟩
|
|
|
|
|
rw [Set.ssubset_def]
|
|
|
|
|
apply And.intro
|
|
|
|
|
· simp
|
|
|
|
|
· show ¬ ∀ x, x ∈ Set.univ → x ∈ S
|
|
|
|
|
simp only [
|
|
|
|
|
Set.mem_univ,
|
|
|
|
|
true_and,
|
|
|
|
|
Set.mem_setOf_eq,
|
|
|
|
|
forall_true_left,
|
|
|
|
|
not_forall,
|
|
|
|
|
not_exists
|
|
|
|
|
]
|
|
|
|
|
refine ⟨1, ?_⟩
|
|
|
|
|
intro x nx
|
|
|
|
|
simp only [mul_eq_one, false_and] at nx
|
|
|
|
|
|
|
|
|
|
refine ⟨by simp, ?_, ?_⟩
|
|
|
|
|
· -- `Set.InjOn f Set.univ`
|
|
|
|
|
intro n₁ _ n₂ _ hf
|
|
|
|
|
match @trichotomous ℕ LT.lt _ n₁ n₂ with
|
|
|
|
|
| Or.inr (Or.inl r) => exact r
|
|
|
|
|
| Or.inl r =>
|
|
|
|
|
have := (Chapter_4.theorem_4n_ii n₁ n₂ 1).mp r
|
|
|
|
|
conv at this => left; rw [mul_comm]
|
|
|
|
|
conv at this => right; rw [mul_comm]
|
|
|
|
|
exact absurd hf (Nat.ne_of_lt this)
|
|
|
|
|
| Or.inr (Or.inr r) =>
|
|
|
|
|
have := (Chapter_4.theorem_4n_ii n₂ n₁ 1).mp r
|
|
|
|
|
conv at this => left; rw [mul_comm]
|
|
|
|
|
conv at this => right; rw [mul_comm]
|
|
|
|
|
exact absurd hf.symm (Nat.ne_of_lt this)
|
|
|
|
|
· -- `Set.SurjOn f Set.univ S`
|
|
|
|
|
show ∀ x, x ∈ S → x ∈ f '' Set.univ
|
|
|
|
|
intro x hx
|
|
|
|
|
unfold Set.image
|
|
|
|
|
simp only [Set.mem_univ, true_and, Set.mem_setOf_eq] at hx ⊢
|
|
|
|
|
exact hx
|
2023-08-24 00:23:28 +00:00
|
|
|
|
|
|
|
|
|
/-- #### Corollary 6E
|
|
|
|
|
|
|
|
|
|
Any finite set is equinumerous to a unique natural number.
|
|
|
|
|
-/
|
2023-09-17 18:07:24 +00:00
|
|
|
|
theorem corollary_6e [Nonempty α] (S : Set α) (hS : Set.Finite S)
|
|
|
|
|
: ∃! n : ℕ, S ≈ Set.Iio n := by
|
|
|
|
|
have ⟨n, hf⟩ := Set.finite_iff_equinumerous_nat.mp hS
|
|
|
|
|
refine ⟨n, hf, ?_⟩
|
|
|
|
|
intro m hg
|
|
|
|
|
match @trichotomous ℕ LT.lt _ m n with
|
|
|
|
|
| Or.inr (Or.inl r) => exact r
|
|
|
|
|
| Or.inl r =>
|
|
|
|
|
have hh := Set.equinumerous_symm hg
|
|
|
|
|
have hk := Set.equinumerous_trans hh hf
|
|
|
|
|
have hmn : Set.Iio m ⊂ Set.Iio n := Set.Iio_nat_lt_ssubset r
|
|
|
|
|
exact absurd hk (pigeonhole_principle hmn)
|
|
|
|
|
| Or.inr (Or.inr r) =>
|
|
|
|
|
have hh := Set.equinumerous_symm hf
|
|
|
|
|
have hk := Set.equinumerous_trans hh hg
|
|
|
|
|
have hnm : Set.Iio n ⊂ Set.Iio m := Set.Iio_nat_lt_ssubset r
|
|
|
|
|
exact absurd hk (pigeonhole_principle hnm)
|
2023-08-24 00:23:28 +00:00
|
|
|
|
|
|
|
|
|
/-- #### Lemma 6F
|
|
|
|
|
|
|
|
|
|
If `C` is a proper subset of a natural number `n`, then `C ≈ m` for some `m`
|
|
|
|
|
less than `n`.
|
|
|
|
|
-/
|
2023-09-17 18:07:24 +00:00
|
|
|
|
lemma lemma_6f {n : ℕ}
|
|
|
|
|
: ∀ {C}, C ⊂ Set.Iio n → ∃ m, m < n ∧ C ≈ Set.Iio m := by
|
|
|
|
|
induction n with
|
|
|
|
|
| zero =>
|
|
|
|
|
intro C hC
|
|
|
|
|
unfold Set.Iio at hC
|
|
|
|
|
simp only [Nat.zero_eq, not_lt_zero', Set.setOf_false] at hC
|
|
|
|
|
rw [Set.ssubset_empty_iff_false] at hC
|
|
|
|
|
exact False.elim hC
|
|
|
|
|
| succ n ih =>
|
|
|
|
|
have h_subset_equinumerous
|
|
|
|
|
: ∀ S, S ⊆ Set.Iio n →
|
|
|
|
|
∃ m, m < n + 1 ∧ S ≈ Set.Iio m := by
|
|
|
|
|
intro S hS
|
|
|
|
|
rw [subset_iff_ssubset_or_eq] at hS
|
|
|
|
|
apply Or.elim hS
|
|
|
|
|
· -- `S ⊂ Set.Iio n`
|
|
|
|
|
intro h
|
|
|
|
|
have ⟨m, hm⟩ := ih h
|
|
|
|
|
exact ⟨m, calc m
|
|
|
|
|
_ < n := hm.left
|
|
|
|
|
_ < n + 1 := by simp, hm.right⟩
|
|
|
|
|
· -- `S = Set.Iio n`
|
|
|
|
|
intro h
|
|
|
|
|
exact ⟨n, by simp, Set.eq_imp_equinumerous h⟩
|
|
|
|
|
|
|
|
|
|
intro C hC
|
|
|
|
|
by_cases hn : n ∈ C
|
|
|
|
|
· -- Since `C` is a proper subset of `n⁺`, the set `n⁺ - C` is nonempty.
|
|
|
|
|
have hC₁ : Set.Nonempty (Set.Iio (n + 1) \ C) := by
|
|
|
|
|
rw [Set.ssubset_def] at hC
|
|
|
|
|
have : ¬ ∀ x, x ∈ Set.Iio (n + 1) → x ∈ C := hC.right
|
|
|
|
|
simp only [Set.mem_Iio, not_forall, exists_prop] at this
|
|
|
|
|
exact this
|
|
|
|
|
-- `p` is the least element of `n⁺ - C`.
|
|
|
|
|
have ⟨p, hp⟩ := Chapter_4.well_ordering_nat hC₁
|
|
|
|
|
|
|
|
|
|
let C' := (C \ {n}) ∪ {p}
|
|
|
|
|
have hC'₁ : C' ⊆ Set.Iio n := by
|
|
|
|
|
show ∀ x, x ∈ C' → x ∈ Set.Iio n
|
|
|
|
|
intro x hx
|
|
|
|
|
match @trichotomous ℕ LT.lt _ x n with
|
|
|
|
|
| Or.inl r => exact r
|
|
|
|
|
| Or.inr (Or.inl r) =>
|
|
|
|
|
rw [r] at hx
|
|
|
|
|
apply Or.elim hx
|
|
|
|
|
· intro nx
|
|
|
|
|
simp at nx
|
|
|
|
|
· intro nx
|
|
|
|
|
simp only [Set.mem_singleton_iff] at nx
|
|
|
|
|
rw [nx] at hn
|
|
|
|
|
exact absurd hn hp.left.right
|
|
|
|
|
| Or.inr (Or.inr r) =>
|
|
|
|
|
apply Or.elim hx
|
|
|
|
|
· intro ⟨h₁, h₂⟩
|
|
|
|
|
have h₃ := subset_of_ssubset hC h₁
|
|
|
|
|
simp only [Set.mem_singleton_iff, Set.mem_Iio] at h₂ h₃
|
|
|
|
|
exact Or.elim (Nat.lt_or_eq_of_lt h₃) id (absurd · h₂)
|
|
|
|
|
· intro h
|
|
|
|
|
simp only [Set.mem_singleton_iff] at h
|
|
|
|
|
have := hp.left.left
|
|
|
|
|
rw [← h] at this
|
|
|
|
|
exact Or.elim (Nat.lt_or_eq_of_lt this)
|
|
|
|
|
id (absurd · (Nat.ne_of_lt r).symm)
|
|
|
|
|
have ⟨m, hm₁, hm₂⟩ := h_subset_equinumerous C' hC'₁
|
|
|
|
|
|
|
|
|
|
suffices C' ≈ C from
|
|
|
|
|
⟨m, hm₁, Set.equinumerous_trans (Set.equinumerous_symm this) hm₂⟩
|
|
|
|
|
|
|
|
|
|
-- Proves `f` is a one-to-one correspondence between `C'` and `C`.
|
|
|
|
|
let f x := if x = p then n else x
|
|
|
|
|
refine ⟨f, ?_, ?_, ?_⟩
|
|
|
|
|
· -- `Set.MapsTo f C' C`
|
|
|
|
|
intro x hx
|
|
|
|
|
dsimp only
|
|
|
|
|
by_cases hxp : x = p
|
|
|
|
|
· rw [if_pos hxp]
|
|
|
|
|
exact hn
|
|
|
|
|
· rw [if_neg hxp]
|
|
|
|
|
apply Or.elim hx
|
|
|
|
|
· exact fun x => x.left
|
|
|
|
|
· intro hx₁
|
|
|
|
|
simp only [Set.mem_singleton_iff] at hx₁
|
|
|
|
|
exact absurd hx₁ hxp
|
|
|
|
|
· -- `Set.InjOn f C'`
|
|
|
|
|
intro x₁ hx₁ x₂ hx₂ hf
|
|
|
|
|
dsimp only at hf
|
|
|
|
|
by_cases hx₁p : x₁ = p
|
|
|
|
|
· by_cases hx₂p : x₂ = p
|
|
|
|
|
· rw [hx₁p, hx₂p]
|
|
|
|
|
· rw [if_pos hx₁p, if_neg hx₂p] at hf
|
|
|
|
|
apply Or.elim hx₂
|
|
|
|
|
· intro nx
|
|
|
|
|
exact absurd hf.symm nx.right
|
|
|
|
|
· intro nx
|
|
|
|
|
simp only [Set.mem_singleton_iff] at nx
|
|
|
|
|
exact absurd nx hx₂p
|
|
|
|
|
· by_cases hx₂p : x₂ = p
|
|
|
|
|
· rw [if_neg hx₁p, if_pos hx₂p] at hf
|
|
|
|
|
apply Or.elim hx₁
|
|
|
|
|
· intro nx
|
|
|
|
|
exact absurd hf nx.right
|
|
|
|
|
· intro nx
|
|
|
|
|
simp only [Set.mem_singleton_iff] at nx
|
|
|
|
|
exact absurd nx hx₁p
|
|
|
|
|
· rwa [if_neg hx₁p, if_neg hx₂p] at hf
|
|
|
|
|
· -- `Set.SurjOn f C' C`
|
|
|
|
|
show ∀ x, x ∈ C → x ∈ f '' C'
|
|
|
|
|
intro x hx
|
|
|
|
|
simp only [
|
|
|
|
|
Set.union_singleton,
|
|
|
|
|
Set.mem_diff,
|
|
|
|
|
Set.mem_singleton_iff,
|
|
|
|
|
Set.mem_image,
|
|
|
|
|
Set.mem_insert_iff,
|
|
|
|
|
exists_eq_or_imp,
|
|
|
|
|
ite_true
|
|
|
|
|
]
|
|
|
|
|
by_cases nx₁ : x = n
|
|
|
|
|
· left
|
|
|
|
|
exact nx₁.symm
|
|
|
|
|
· right
|
|
|
|
|
by_cases nx₂ : x = p
|
|
|
|
|
· have := hp.left.right
|
|
|
|
|
rw [← nx₂] at this
|
|
|
|
|
exact absurd hx this
|
|
|
|
|
· exact ⟨x, ⟨hx, nx₁⟩, by rwa [if_neg]⟩
|
|
|
|
|
|
|
|
|
|
· refine h_subset_equinumerous C ?_
|
|
|
|
|
show ∀ x, x ∈ C → x ∈ Set.Iio n
|
|
|
|
|
intro x hx
|
|
|
|
|
unfold Set.Iio
|
|
|
|
|
apply Or.elim (Nat.lt_or_eq_of_lt (subset_of_ssubset hC hx))
|
|
|
|
|
· exact id
|
|
|
|
|
· intro hx₁
|
|
|
|
|
rw [hx₁] at hx
|
|
|
|
|
exact absurd hx hn
|
|
|
|
|
|
|
|
|
|
/-- #### Corollary 6G
|
|
|
|
|
|
|
|
|
|
Any subset of a finite set is finite.
|
|
|
|
|
-/
|
|
|
|
|
theorem corollary_6g {S S' : Set α} (hS : Set.Finite S) (hS' : S' ⊆ S)
|
|
|
|
|
: Set.Finite S' := by
|
|
|
|
|
rw [subset_iff_ssubset_or_eq] at hS'
|
|
|
|
|
apply Or.elim hS'
|
|
|
|
|
· intro h
|
|
|
|
|
rw [Set.finite_iff_equinumerous_nat] at hS
|
|
|
|
|
have ⟨n, F, hF⟩ := hS
|
|
|
|
|
|
|
|
|
|
-- Mirrors logic found in `corollary_6c`.
|
|
|
|
|
let T := S \ S'
|
|
|
|
|
let R := (Set.Iio n) \ (F '' T)
|
|
|
|
|
have hR : R ⊂ Set.Iio n := by
|
|
|
|
|
rw [Set.ssubset_def]
|
|
|
|
|
apply And.intro
|
|
|
|
|
· show ∀ x, x ∈ R → x ∈ Set.Iio n
|
|
|
|
|
intro _ hx
|
|
|
|
|
exact hx.left
|
|
|
|
|
· show ¬ ∀ x, x ∈ Set.Iio n → x ∈ R
|
|
|
|
|
intro nr
|
|
|
|
|
have ⟨t, ht₁⟩ : Set.Nonempty T := Set.diff_ssubset_nonempty h
|
|
|
|
|
have ht₂ : F t ∈ Set.Iio n := hF.left ht₁.left
|
|
|
|
|
have ht₃ : F t ∈ R := nr (F t) ht₂
|
|
|
|
|
exact absurd ⟨t, ht₁, rfl⟩ ht₃.right
|
|
|
|
|
|
|
|
|
|
suffices Set.BijOn F S' R by
|
|
|
|
|
have ⟨m, hm⟩ := lemma_6f hR
|
|
|
|
|
have := Set.equinumerous_trans ⟨F, this⟩ hm.right
|
|
|
|
|
exact Set.finite_iff_equinumerous_nat.mpr ⟨m, this⟩
|
|
|
|
|
refine ⟨?_, ?_, ?_⟩
|
|
|
|
|
· -- `Set.MapsTo f S' R`
|
|
|
|
|
intro x hx
|
|
|
|
|
dsimp only
|
|
|
|
|
simp only [Set.mem_diff, Set.mem_Iio, Set.mem_image, not_exists, not_and]
|
|
|
|
|
apply And.intro
|
|
|
|
|
· exact hF.left (subset_of_ssubset h hx)
|
|
|
|
|
· intro y hy
|
|
|
|
|
by_contra nf
|
|
|
|
|
have := hF.right.left (subset_of_ssubset h hx) hy.left nf.symm
|
|
|
|
|
rw [this] at hx
|
|
|
|
|
exact absurd hx hy.right
|
|
|
|
|
· -- `Set.InjOn f S'`
|
|
|
|
|
intro x₁ hx₁ x₂ hx₂ hf
|
|
|
|
|
have h₁ : x₁ ∈ S := subset_of_ssubset h hx₁
|
|
|
|
|
have h₂ : x₂ ∈ S := subset_of_ssubset h hx₂
|
|
|
|
|
exact hF.right.left h₁ h₂ hf
|
|
|
|
|
· -- `Set.SurjOn f S' R`
|
|
|
|
|
show ∀ x, x ∈ R → x ∈ F '' S'
|
|
|
|
|
intro x hx
|
|
|
|
|
|
|
|
|
|
have h₁ := hF.right.right
|
|
|
|
|
unfold Set.SurjOn at h₁
|
|
|
|
|
rw [Set.subset_def] at h₁
|
|
|
|
|
have ⟨y, hy⟩ := h₁ x hx.left
|
|
|
|
|
|
|
|
|
|
refine ⟨y, ?_, hy.right⟩
|
|
|
|
|
rw [← hy.right] at hx
|
|
|
|
|
simp only [Set.mem_image, Set.mem_diff, not_exists, not_and] at hx
|
|
|
|
|
by_contra ny
|
|
|
|
|
exact (hx.right y ⟨hy.left, ny⟩) rfl
|
2023-08-24 00:23:28 +00:00
|
|
|
|
|
2023-09-17 18:07:24 +00:00
|
|
|
|
· intro h
|
|
|
|
|
rwa [h]
|
2023-08-24 13:50:47 +00:00
|
|
|
|
|
2023-08-17 20:10:21 +00:00
|
|
|
|
/-- #### Exercise 6.1
|
|
|
|
|
|
|
|
|
|
Show that the equation
|
|
|
|
|
```
|
|
|
|
|
f(m, n) = 2ᵐ(2n + 1) - 1
|
|
|
|
|
```
|
|
|
|
|
defines a one-to-one correspondence between `ω × ω` and `ω`.
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_6_1
|
|
|
|
|
: Function.Bijective (fun p : ℕ × ℕ => 2 ^ p.1 * (2 * p.2 + 1) - 1) := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
/-- #### Exercise 6.2
|
|
|
|
|
|
|
|
|
|
Show that in Fig. 32 we have:
|
|
|
|
|
```
|
|
|
|
|
J(m, n) = [1 + 2 + ⋯ + (m + n)] + m
|
|
|
|
|
= (1 / 2)[(m + n)² + 3m + n].
|
|
|
|
|
```
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_6_2
|
|
|
|
|
: Function.Bijective
|
|
|
|
|
(fun p : ℕ × ℕ => (1 / 2) * ((p.1 + p.2) ^ 2 + 3 * p.1 + p.2)) := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
/-- #### Exercise 6.3
|
|
|
|
|
|
|
|
|
|
Find a one-to-one correspondence between the open unit interval `(0, 1)` and `ℝ`
|
|
|
|
|
that takes rationals to rationals and irrationals to irrationals.
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_6_3
|
|
|
|
|
: True := by
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
/-- #### Exercise 6.4
|
|
|
|
|
|
|
|
|
|
Construct a one-to-one correspondence between the closed unit interval
|
|
|
|
|
```
|
|
|
|
|
[0, 1] = {x ∈ ℝ | 0 ≤ x ≤ 1}
|
|
|
|
|
```
|
|
|
|
|
and the open unit interval `(0, 1)`.
|
|
|
|
|
-/
|
|
|
|
|
theorem exercise_6_4
|
|
|
|
|
: ∃ F, Set.BijOn F (Set.Ioo 0 1) (@Set.univ ℝ) := by
|
|
|
|
|
sorry
|
|
|
|
|
|
2023-08-16 18:46:16 +00:00
|
|
|
|
end Enderton.Set.Chapter_6
|