37 KiB
title | TARGET DECK | FILE TAGS | tags | ||
---|---|---|---|---|---|
Graphs | Obsidian::STEM | set::graph |
|
Overview
A directed graph G
is a pair \langle V, E \rangle
, where V
is a finite set and E
is a binary relation on V
. An undirected graph G
is a pair \langle V, E \rangle
, where V
is a finite set and E
is a set of unordered pair of vertices from V
. In both types of graphs, V
is called the vertex set of G
and E
is called the edge set of G
.
%%ANKI Basic What two components make up a directed graph? Back: A vertex set and an edge set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What two components make up an undirected graph? Back: A vertex set and an edge set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What kind of graph(s) might G = \langle V, E \rangle
be?
Back: Directed or undirected.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Cloze
A {1:directed} graph G
is a pair \langle V, E \rangle
, where V
is a {2:finite set} and E
is a {2:binary relation on V
}.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be a directed graph. What conditions must V
satisfy?
Back: It is a finite set.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be a directed graph. What conditions must E
satisfy?
Back: It is a binary relation on E
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be a directed graph. What name is given to V
?
Back: The vertex set of G
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be a directed graph. What name is given to E
?
Back: The edge set of G
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be a directed graph. What name refers to the members of V
?
Back: Vertices.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be a directed graph. What name refers to the members of E
?
Back: Edges.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Cloze
An {1:undirected} graph G
is a pair \langle V, E \rangle
, where V
is a {2:finite set} and E
is a {2:set of unordered pairs of vertices}.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be an undirected graph. What conditions must V
satisfy?
Back: It is a finite set.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be an undirected graph. What conditions must E
satisfy?
Back: It is a set of unordered pairs of vertices.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be an undirected graph. What name is given to V
?
Back: The vertex set of G
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be an undirected graph. What name is given to E
?
Back: The edge set of G
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be an undirected graph. What name refers to the members of V
?
Back: Vertices.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be an undirected graph. What name refers to the members of E
?
Back: Edges.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Which of directed or undirected graphs allow self-loops? Back: Directed graphs. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What does it mean for a directed graph to be simple? Back: It has no self-loops. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the smallest change that can be made for this graph to be considered simple?
!
Back: The self-loop at vertex 2
must be removed.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Cloze A directed graph with {no self-loops} is said to be {simple}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Cloze {1:Ordered pairs} are to {2:directed} graphs whereas {2:unordered} pairs are to {1:undirected} graphs. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What does it mean for a directed graph to contain a self-loop? Back: It contains an edge from a vertex to itself. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Cloze
{1:\langle u, v \rangle
} is to a {2:directed} graph whereas {2:\{u, v\}
} is to an {1:undirected} graph.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let \langle u, v \rangle
be an edge of a directed graph. What can be said about u
and v
?
Back: They are members of the vertex set.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let \{ u, v \}
be an edge of an undirected graph. What two things can be said about u
and v
?
Back: u \neq v
and they are members of the vertex set.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Why are self-loops not permitted in an undirected graph?
Back: An edge \{u, v\}
of an undirected graph satisfies u \neq v
by definition.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic How is an edge of a directed graph usually depicted pictorially? Back: As an arrow. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic How is an edge of an undirected graph usually depicted pictorially? Back: As a line segment. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is the following a directed or undirected graph? ! Back: Directed. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is the following a directed or undirected graph? ! Back: Undirected. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
If \langle u, v \rangle
is an edge of a directed graph, we say \langle u, v \rangle
is incident to v
and incident from u
. Furthermore, we say v
is adjacent to u
. If \{u, v\}
was instead an edge of an undirected graph, we say \{u, v\}
is incident on u
and v
. Likewise, v
is adjacent to u
and u
is adjacent to v
.
%%ANKI
Cloze
Let \langle u, v \rangle
be an edge of a directed graph. Then {1:\langle u, v \rangle
} is incident from {1:u
}.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Cloze
Let \langle u, v \rangle
be an edge of a directed graph. Then {1:\langle u, v \rangle
} is incident to {1:v
}.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What does it mean for an edge to be incident from vertex v
?
Back: v
is the first member of the edge.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What does it mean for an edge to be incident to vertex v
?
Back: v
is the second member of the edge.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
With respect to directed graphs, what term describes an edge of form \langle v, v \rangle
?
Back: A self-loop.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which edges are incident from vertex 2
in the following?
!
Back: \langle 2, 2 \rangle
, \langle 2, 4 \rangle
, \langle 2, 5 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which edges are incident to vertex 2
in the following?
!
Back: \langle 1, 2 \rangle
, \langle 2, 2 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What "kinds" of incidence exist in a directed graph? Back: Incidence to and incidence from. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Given directed graph G = \langle V, E \rangle
, what does it mean for vertex u
to be adjacent to v
?
Back: There exists an edge \langle v, u \rangle
in E
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Given directed graph G = \langle V, E \rangle
, what does it mean for vertex v
to be adjacent to u
?
Back: There exists an edge \langle u, v \rangle
in E
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Given undirected graph G = \langle V, E \rangle
, what does it mean for vertex v
to be adjacent to u
?
Back: There exists an edge \{ u, v \}
in E
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Cloze
Let \langle u, v \rangle
be an edge of an undirected graph. Then {1:\langle u, v \rangle
} is incident on {1:u
and v
}.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What does it mean for an edge to be incident on vertex v
?
Back: v
is a member of the edge.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Cloze Incident {1:to/from} is to directed graphs whereas incident {1:on} is to undirected graphs. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which edges are incident on vertex 2
in the following?
!
Back: \{ 1, 2 \}
, \{2, 5\}
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What "kinds" of incidence exist in an undirected graph? Back: Incidence on. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is the concept of adjacency related to directed graphs or undirected graphs? Back: Both. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is the concept of incidence related to directed graphs or undirected graphs? Back: Both. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Adjacency is a binary relation on what two kinds of objects? Back: Vertices. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
In a directed graph, how can we restate "vertex v
is adjacent to vertex u
" in terms of incidence to?
Back: Edge \langle u, v \rangle
is incident to v
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
In a directed graph, how can we restate "vertex v
is adjacent to vertex u
" in terms of incidence from?
Back: Edge \langle u, v \rangle
is incident from u
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
In a directed graph, how can we restate "edge \langle u, v \rangle
is incident to v
" in terms of adjacency?
Back: Vertex v
is adjacent to vertex u
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
In a directed graph, how can we restate "edge \langle u, v \rangle
is incident from u
" in terms of adjacency?
Back: Vertex v
is adjacent to vertex u
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Incidence is a binary relation on what two kinds of objects? Back: A vertex and an edge. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
In an undirected graph, how can we restate "vertex v
is adjacent to vertex u
" in terms of incidence on?
Back: Edge \{u, v\}
is incident on v
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
In an undirected graph, how can we restate "vertex u
is adjacent to vertex v
" in terms of incidence on?
Back: Edge \{v, u\}
is incident on u
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In what kind of graph is adjacency necessarily symmetric? Back: Undirected graphs. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In what kind of graph is adjacency not necessarily symmetric? Back: Directed graphs. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which vertices is vertex 2
adjacent to?
!
Back: 1
and 2
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which vertices is vertex 2
adjacent to?
!
Back: 1
and 5
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What is the degree of a vertex of a directed graph? Back: The number of edges incident to and from the vertex. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In a directed graph, how is a vertex's degree further subcategorized? Back: As in-degrees and out-degrees. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What is the in-degree of a vertex of a directed graph? Back: The number of edges incident to the vertex. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What is the out-degree of a vertex of a directed graph? Back: The number of edges incident from the vertex. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Cloze Given a directed graph, incident {1:to} is to {1:in}-degrees whereas incident {1:from} is to {1:out}-degrees. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the in-degree of vertex 5
?
!
Back: 2
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the out-degree of vertex 5
?
!
Back: 1
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the degree of vertex 4
?
!
Back: 4
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What is the degree of a vertex of an undirected graph? Back: The number of edges incident on the vertex. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the degree of vertex 3
?
!
Back: 1
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What does it mean for a vertex of a graph to be isolated?
Back: It has degree 0
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What term describes a vertex of a graph with degree 0
?
Back: Isolated.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Which vertices are isolated in the following? ! Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which vertices are isolated in the following?
!
Back: 4
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What term describes vertex 4
in the following?
!
Back: Isolated.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
Paths
A path of length k
from a vertex u
to vertex u'
is a sequence p = \langle v_0, v_1, \ldots, v_k \rangle
of vertices such that u = v_0
, u' = v_k
, and (v_{i-1}, v_i) \in E
for i = 1, 2, \ldots, k
. In this case, we say u'
is reachable from u
via p
. A path is simple if all vertices in the path are distinct.
%%ANKI
Basic
Let G = \langle V, E \rangle
be a graph. What is a path from vertex u
to vertex v
?
Back: A sequence of vertices \langle u, \ldots, v \rangle
such that there is an edge for each consecutive pair of vertices.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be a graph with path \langle v_0, v_1, \ldots, v_k \rangle
. What is the path's length?
Back: k
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In terms of edges, what is the length of a path? Back: The number of edges specified in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In terms of vertices, what is the length of a path? Back: One less than the number of vertices specified in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let G = \langle V, E \rangle
be a graph. A path of G
is said to contain what?
Back: Vertices and edges.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic How does a path of a graph relate to the concept of adjacency? Back: Each vertex must be adjacent to the vertex preceding it in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic How does a path of a directed graph relate to the concept of incidence? Back: There exists an edge incident to each vertex that is also incident from the vertex preceding it in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic How does a path of an undirected graph relate to the concept of incidence? Back: There exists an edge incident on each vertex and the vertex preceding it in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the paths from vertex 3
to vertex 6
?
!
Back: N/A
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the paths from vertex 6
to vertex 3
?
!
Back: \langle 6, 3 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the paths from vertex 6
to vertex 6
?
!
Back: \langle 6 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the paths of length 1
from vertex 2
to vertex 2
?
!
Back: \langle 1, 2 \rangle
, \langle 2, 2 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the paths of length 2
from vertex 2
to vertex 2
?
!
Back: \langle 4, 1, 2 \rangle
, \langle 2, 2, 2 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the paths from vertex 4
to vertex 4
?
!
Back: \langle 4 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the paths from vertex 3
to vertex 6
?
!
Back: \langle 3, 6 \rangle
, \langle 3, 6, 3, 6 \rangle
, \ldots
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Reachability is a binary relation on what two kinds of objects? Back: Vertices. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic How does reachability relate to adjacency? Back: Reachability is the transitive generalization of adjacency. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What proximity-based term describes distinct vertices being maximally close? Back: Adjacency. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Cloze {Reachability} is the generalization of {adjacency}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What does it mean for vertex u
to be reachable to vertex v
?
Back: There exists a path from u
to v
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What path must exist if vertex u
is adjacent to vertex v
?
Back: \langle v, u \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Cloze
Reachable is to paths of length {1:\geq 0
} whereas adjacency is to paths of length {1:1
}.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
A path is simple if all vertices in the path are distinct. In a directed graph, path \langle v_0, v_1, \ldots, v_k \rangle
forms a cycle if v_0 = v_k
and the path contains at least one edge. In an undirected graph, path \langle v_0, v_1, \ldots, v_k \rangle
forms a cycle if v_0 = v_k
and all edges are distinct. We say a cycle is simple if all vertices in the path (barring the first and last) are distinct. A graph with no simple cycles is acyclic.
%%ANKI Basic What does it mean for a path to be simple? Back: All the vertices in the path are distinct. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
In a directed graph, when is \langle v_0, v_1, \ldots, v_k \rangle
considered a cycle?
Back: When v_0 = v_k
and there is at least one edge in the path.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In terms of edges, what is the length of a cycle? Back: The number of edges specified in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In terms of vertices, what is the length of a cycle? Back: One less than the number of vertices specified in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What does it mean for a cycle to be simple? Back: Except for the first which equals the last, all the vertices in the path are distinct. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic How many edges exist in a cycle of a directed graph? Back: At least one. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
In an undirected graph, when is \langle v_0, v_1, \ldots, v_k \rangle
considered a cycle?
Back: When v_0 = v_k
, k > 0
, and all edges in the path are distinct.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic How many edges exist in a cycle of an undirected graph? Back: At least three. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Cloze
Path \langle 1, 2, 4, 1 \rangle
is not a simple {1:path} but is a simple {1:cycle}.
!
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Cloze
Path \langle 1, 2, 4 \rangle
is a simple {1:path} but not a simple {1:cycle}.
!
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic With respect to paths, what ambiguity exists with the term "simple"? Back: Whether we are referring to simple paths or simple cycles. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the paths to vertex 3
?
!
Back: \langle 3 \rangle
and \langle 6, 3 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the paths to vertex 6
?
!
Back: \langle 6 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the simple paths of length 1
to vertex 2
?
!
Back: \langle 1, 2 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the paths of length 1
to vertex 2
?
!
Back: \langle 1, 2 \rangle
and \langle 2, 2 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the paths of length 2
to vertex 2
?
!
Back: \langle 4, 1, 2 \rangle
and \langle 2, 2, 2 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the cycles of length 3
to vertex 2
?
!
Back: \langle 2, 4, 1, 2 \rangle
and \langle 2, 2, 2, 2 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the simple cycles of length 3
to vertex 2
?
!
Back: \langle 2, 4, 1, 2 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are all the simple cycles containing vertex 2
?
!
Back: \langle 2, 2 \rangle
, \langle 2, 4, 1, 2 \rangle
, and \langle 2, 5, 4, 1, 2 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Why isn't \langle 3, 6, 3 \rangle
considered a cycle?
!
Back: All the edges in the path must be distinct.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Why isn't \langle 3, 6 \rangle
considered a cycle?
!
Back: The first and last vertex of the path must be the same.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the simple paths to vertex 2
?
!
Back: \langle 2 \rangle
, \langle 1, 2 \rangle
, \langle 5, 2 \rangle
, \langle 1, 5, 2 \rangle
, \langle 5, 1, 2 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the cycles containing vertex 2
?
!
Back: \langle 1, 2, 5, 1 \rangle
and \langle 1, 5, 2, 1 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the simple cycles containing vertex 2
?
!
Back: \langle 1, 2, 5, 1 \rangle
and \langle 1, 5, 2, 1 \rangle
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the cycles containing vertex 3
?
!
Back: N/A
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What does it mean for a graph to be acyclic? Back: It has no simple cycles. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What is DAG an acronym for? Back: A directed acyclic graph. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
References
- Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).