--- title: Graphs TARGET DECK: Obsidian::STEM FILE TAGS: set::graph tags: - graph - set --- ## Overview A **directed graph** $G$ is a pair $\langle V, E \rangle$, where $V$ is a finite set and $E$ is a binary relation on $V$. An **undirected graph** $G$ is a pair $\langle V, E \rangle$, where $V$ is a finite set and $E$ is a set of unordered pair of vertices from $V$. In both types of graphs, $V$ is called the **vertex set** of $G$ and $E$ is called the **edge set** of $G$. %%ANKI Basic What two components make up a directed graph? Back: A vertex set and an edge set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What two components make up an undirected graph? Back: A vertex set and an edge set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What kind of graph(s) might $G = \langle V, E \rangle$ be? Back: Directed or undirected. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze A {1:directed} graph $G$ is a pair $\langle V, E \rangle$, where $V$ is a {2:finite set} and $E$ is a {2:binary relation on $V$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be a directed graph. What conditions must $V$ satisfy? Back: It is a finite set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be a directed graph. What conditions must $E$ satisfy? Back: It is a binary relation on $E$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be a directed graph. What name is given to $V$? Back: The vertex set of $G$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be a directed graph. What name is given to $E$? Back: The edge set of $G$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be a directed graph. What name refers to the members of $V$? Back: Vertices. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be a directed graph. What name refers to the members of $E$? Back: Edges. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze An {1:undirected} graph $G$ is a pair $\langle V, E \rangle$, where $V$ is a {2:finite set} and $E$ is a {2:set of unordered pairs of vertices}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be an undirected graph. What conditions must $V$ satisfy? Back: It is a finite set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be an undirected graph. What conditions must $E$ satisfy? Back: It is a set of unordered pairs of vertices. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be an undirected graph. What name is given to $V$? Back: The vertex set of $G$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be an undirected graph. What name is given to $E$? Back: The edge set of $G$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be an undirected graph. What name refers to the members of $V$? Back: Vertices. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be an undirected graph. What name refers to the members of $E$? Back: Edges. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which of directed or undirected graphs allow self-loops? Back: Directed graphs. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does it mean for a directed graph to be simple? Back: It has no self-loops. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the smallest change that can be made for this graph to be considered simple? ![[directed-graph-example.png]] Back: The self-loop at vertex $2$ must be removed. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze A directed graph with {no self-loops} is said to be {simple}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze {1:Ordered pairs} are to {2:directed} graphs whereas {2:unordered} pairs are to {1:undirected} graphs. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does it mean for a directed graph to contain a self-loop? Back: It contains an edge from a vertex to itself. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze {1:$\langle u, v \rangle$} is to a {2:directed} graph whereas {2:$\{u, v\}$} is to an {1:undirected} graph. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $\langle u, v \rangle$ be an edge of a directed graph. What can be said about $u$ and $v$? Back: They are members of the vertex set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $\{ u, v \}$ be an edge of an undirected graph. What two things can be said about $u$ and $v$? Back: $u \neq v$ and they are members of the vertex set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic *Why* are self-loops not permitted in an undirected graph? Back: An edge $\{u, v\}$ of an undirected graph satisfies $u \neq v$ by definition. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How is an edge of a directed graph usually depicted pictorially? Back: As an arrow. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How is an edge of an undirected graph usually depicted pictorially? Back: As a line segment. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Is the following a directed or undirected graph? ![[directed-graph-example.png]] Back: Directed. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Is the following a directed or undirected graph? ![[undirected-graph-example.png]] Back: Undirected. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% If $\langle u, v \rangle$ is an edge of a directed graph, we say $\langle u, v \rangle$ is **incident to** $v$ and **incident from** $u$. Furthermore, we say $v$ is **adjacent** to $u$. If $\{u, v\}$ was instead an edge of an undirected graph, we say $\{u, v\}$ is **incident on** $u$ and $v$. Likewise, $v$ is adjacent to $u$ and $u$ is adjacent to $v$. %%ANKI Cloze Let $\langle u, v \rangle$ be an edge of a directed graph. Then {1:$\langle u, v \rangle$} is incident from {1:$u$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Let $\langle u, v \rangle$ be an edge of a directed graph. Then {1:$\langle u, v \rangle$} is incident to {1:$v$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does it mean for an edge to be incident from vertex $v$? Back: $v$ is the first member of the edge. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does it mean for an edge to be incident to vertex $v$? Back: $v$ is the second member of the edge. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic With respect to directed graphs, what term describes an edge of form $\langle v, v \rangle$? Back: A self-loop. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which edges are incident from vertex $2$ in the following? ![[directed-graph-example.png]] Back: $\langle 2, 2 \rangle$, $\langle 2, 4 \rangle$, $\langle 2, 5 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which edges are incident to vertex $2$ in the following? ![[directed-graph-example.png]] Back: $\langle 1, 2 \rangle$, $\langle 2, 2 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What "kinds" of incidence exist in a directed graph? Back: Incidence to and incidence from. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Given directed graph $G = \langle V, E \rangle$, what does it mean for vertex $u$ to be adjacent to $v$? Back: There exists an edge $\langle v, u \rangle$ in $E$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Given directed graph $G = \langle V, E \rangle$, what does it mean for vertex $v$ to be adjacent to $u$? Back: There exists an edge $\langle u, v \rangle$ in $E$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Given undirected graph $G = \langle V, E \rangle$, what does it mean for vertex $v$ to be adjacent to $u$? Back: There exists an edge $\{ u, v \}$ in $E$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Let $\langle u, v \rangle$ be an edge of an undirected graph. Then {1:$\langle u, v \rangle$} is incident on {1:$u$ and $v$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does it mean for an edge to be incident on vertex $v$? Back: $v$ is a member of the edge. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Incident {1:to/from} is to directed graphs whereas incident {1:on} is to undirected graphs. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which edges are incident on vertex $2$ in the following? ![[undirected-graph-example.png]] Back: $\{ 1, 2 \}$, $\{2, 5\}$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What "kinds" of incidence exist in an undirected graph? Back: Incidence on. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Is the concept of adjacency related to directed graphs or undirected graphs? Back: Both. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Is the concept of incidence related to directed graphs or undirected graphs? Back: Both. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Adjacency is a binary relation on what two kinds of objects? Back: Vertices. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In a directed graph, how can we restate "vertex $v$ is adjacent to vertex $u$" in terms of incidence to? Back: Edge $\langle u, v \rangle$ is incident to $v$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In a directed graph, how can we restate "vertex $v$ is adjacent to vertex $u$" in terms of incidence from? Back: Edge $\langle u, v \rangle$ is incident from $u$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In a directed graph, how can we restate "edge $\langle u, v \rangle$ is incident to $v$" in terms of adjacency? Back: Vertex $v$ is adjacent to vertex $u$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In a directed graph, how can we restate "edge $\langle u, v \rangle$ is incident from $u$" in terms of adjacency? Back: Vertex $v$ is adjacent to vertex $u$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Incidence is a binary relation on what two kinds of objects? Back: A vertex and an edge. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In an undirected graph, how can we restate "vertex $v$ is adjacent to vertex $u$" in terms of incidence on? Back: Edge $\{u, v\}$ is incident on $v$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In an undirected graph, how can we restate "vertex $u$ is adjacent to vertex $v$" in terms of incidence on? Back: Edge $\{v, u\}$ is incident on $u$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In what kind of graph is adjacency necessarily symmetric? Back: Undirected graphs. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In what kind of graph is adjacency not necessarily symmetric? Back: Directed graphs. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which vertices is vertex $2$ adjacent to? ![[directed-graph-example.png]] Back: $1$ and $2$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which vertices is vertex $2$ adjacent to? ![[undirected-graph-example.png]] Back: $1$ and $5$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the degree of a vertex of a directed graph? Back: The number of edges incident to and from the vertex. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In a directed graph, how is a vertex's degree further subcategorized? Back: As in-degrees and out-degrees. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the in-degree of a vertex of a directed graph? Back: The number of edges incident to the vertex. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the out-degree of a vertex of a directed graph? Back: The number of edges incident from the vertex. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Given a directed graph, incident {1:to} is to {1:in}-degrees whereas incident {1:from} is to {1:out}-degrees. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the in-degree of vertex $5$? ![[directed-graph-example.png]] Back: $2$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the out-degree of vertex $5$? ![[directed-graph-example.png]] Back: $1$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the degree of vertex $4$? ![[directed-graph-example.png]] Back: $4$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the degree of a vertex of an undirected graph? Back: The number of edges incident on the vertex. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is the degree of vertex $3$? ![[undirected-graph-example.png]] Back: $1$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does it mean for a vertex of a graph to be isolated? Back: It has degree $0$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What term describes a vertex of a graph with degree $0$? Back: Isolated. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which vertices are isolated in the following? ![[directed-graph-example.png]] Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Which vertices are isolated in the following? ![[undirected-graph-example.png]] Back: $4$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What term describes vertex $4$ in the following? ![[undirected-graph-example.png]] Back: Isolated. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% ## Paths A **path of length $k$** from a vertex $u$ to vertex $u'$ is a sequence $p = \langle v_0, v_1, \ldots, v_k \rangle$ of vertices such that $u = v_0$, $u' = v_k$, and $(v_{i-1}, v_i) \in E$ for $i = 1, 2, \ldots, k$. In this case, we say $u'$ is **reachable** from $u$ via $p$. A path is **simple** if all vertices in the path are distinct. %%ANKI Basic Let $G = \langle V, E \rangle$ be a graph. What *is* a path from vertex $u$ to vertex $v$? Back: A sequence of vertices $\langle u, \ldots, v \rangle$ such that there is an edge for each consecutive pair of vertices. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be a graph with path $\langle v_0, v_1, \ldots, v_k \rangle$. What is the path's length? Back: $k$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In terms of edges, what is the length of a path? Back: The number of edges specified in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In terms of vertices, what is the length of a path? Back: One less than the number of vertices specified in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Let $G = \langle V, E \rangle$ be a graph. A path of $G$ is said to contain what? Back: Vertices and edges. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How does a path of a graph relate to the concept of adjacency? Back: Each vertex must be adjacent to the vertex preceding it in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How does a path of a directed graph relate to the concept of incidence? Back: There exists an edge incident to each vertex that is also incident from the vertex preceding it in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How does a path of an undirected graph relate to the concept of incidence? Back: There exists an edge incident on each vertex and the vertex preceding it in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the paths from vertex $3$ to vertex $6$? ![[directed-graph-example.png]] Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the paths from vertex $6$ to vertex $3$? ![[directed-graph-example.png]] Back: $\langle 6, 3 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the paths from vertex $6$ to vertex $6$? ![[directed-graph-example.png]] Back: $\langle 6 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the paths of length $1$ from vertex $2$ to vertex $2$? ![[directed-graph-example.png]] Back: $\langle 1, 2 \rangle$, $\langle 2, 2 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the paths of length $2$ from vertex $2$ to vertex $2$? ![[directed-graph-example.png]] Back: $\langle 4, 1, 2 \rangle$, $\langle 2, 2, 2 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the paths from vertex $4$ to vertex $4$? ![[undirected-graph-example.png]] Back: $\langle 4 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the paths from vertex $3$ to vertex $6$? ![[undirected-graph-example.png]] Back: $\langle 3, 6 \rangle$, $\langle 3, 6, 3, 6 \rangle$, $\ldots$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Reachability is a binary relation on what two kinds of objects? Back: Vertices. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How does reachability relate to adjacency? Back: Reachability is the transitive generalization of adjacency. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What proximity-based term describes distinct vertices being maximally close? Back: Adjacency. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze {Reachability} is the generalization of {adjacency}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does it mean for vertex $u$ to be reachable to vertex $v$? Back: There exists a path from $u$ to $v$. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What path must exist if vertex $u$ is adjacent to vertex $v$? Back: $\langle v, u \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Reachable is to paths of length {1:$\geq 0$} whereas adjacency is to paths of length {1:$1$}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% A path is **simple** if all vertices in the path are distinct. In a directed graph, path $\langle v_0, v_1, \ldots, v_k \rangle$ forms a **cycle** if $v_0 = v_k$ and the path contains at least one edge. In an undirected graph, path $\langle v_0, v_1, \ldots, v_k \rangle$ forms a cycle if $v_0 = v_k$ and all edges are distinct. We say a cycle is **simple** if all vertices in the path (barring the first and last) are distinct. A graph with no simple cycles is **acyclic**. %%ANKI Basic What does it mean for a path to be simple? Back: All the vertices in the path are distinct. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In a directed graph, when is $\langle v_0, v_1, \ldots, v_k \rangle$ considered a cycle? Back: When $v_0 = v_k$ and there is at least one edge in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In terms of edges, what is the length of a cycle? Back: The number of edges specified in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In terms of vertices, what is the length of a cycle? Back: One less than the number of vertices specified in the path. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does it mean for a cycle to be simple? Back: Except for the first which equals the last, all the vertices in the path are distinct. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How many edges exist in a cycle of a directed graph? Back: At least one. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic In an undirected graph, when is $\langle v_0, v_1, \ldots, v_k \rangle$ considered a cycle? Back: When $v_0 = v_k$, $k > 0$, and all edges in the path are distinct. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic How many edges exist in a cycle of an undirected graph? Back: At least three. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Path $\langle 1, 2, 4, 1 \rangle$ is not a simple {1:path} but is a simple {1:cycle}. ![[directed-graph-example.png]] Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Cloze Path $\langle 1, 2, 4 \rangle$ is a simple {1:path} but not a simple {1:cycle}. ![[directed-graph-example.png]] Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic With respect to paths, what ambiguity exists with the term "simple"? Back: Whether we are referring to simple paths or simple cycles. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the paths to vertex $3$? ![[directed-graph-example.png]] Back: $\langle 3 \rangle$ and $\langle 6, 3 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the paths to vertex $6$? ![[directed-graph-example.png]] Back: $\langle 6 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the simple paths of length $1$ to vertex $2$? ![[directed-graph-example.png]] Back: $\langle 1, 2 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the paths of length $1$ to vertex $2$? ![[directed-graph-example.png]] Back: $\langle 1, 2 \rangle$ and $\langle 2, 2 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the paths of length $2$ to vertex $2$? ![[directed-graph-example.png]] Back: $\langle 4, 1, 2 \rangle$ and $\langle 2, 2, 2 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the cycles of length $3$ to vertex $2$? ![[directed-graph-example.png]] Back: $\langle 2, 4, 1, 2 \rangle$ and $\langle 2, 2, 2, 2 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the simple cycles of length $3$ to vertex $2$? ![[directed-graph-example.png]] Back: $\langle 2, 4, 1, 2 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are all the simple cycles containing vertex $2$? ![[directed-graph-example.png]] Back: $\langle 2, 2 \rangle$, $\langle 2, 4, 1, 2 \rangle$, and $\langle 2, 5, 4, 1, 2 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Why isn't $\langle 3, 6, 3 \rangle$ considered a cycle? ![[undirected-graph-example.png]] Back: All the edges in the path must be distinct. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic Why isn't $\langle 3, 6 \rangle$ considered a cycle? ![[undirected-graph-example.png]] Back: The first and last vertex of the path must be the same. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the simple paths to vertex $2$? ![[undirected-graph-example.png]] Back: $\langle 2 \rangle$, $\langle 1, 2 \rangle$, $\langle 5, 2 \rangle$, $\langle 1, 5, 2 \rangle$, $\langle 5, 1, 2 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the cycles containing vertex $2$? ![[undirected-graph-example.png]] Back: $\langle 1, 2, 5, 1 \rangle$ and $\langle 1, 5, 2, 1 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the simple cycles containing vertex $2$? ![[undirected-graph-example.png]] Back: $\langle 1, 2, 5, 1 \rangle$ and $\langle 1, 5, 2, 1 \rangle$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What are the cycles containing vertex $3$? ![[undirected-graph-example.png]] Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What does it mean for a graph to be acyclic? Back: It has no simple cycles. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% %%ANKI Basic What is DAG an acronym for? Back: A **d**irected **a**cyclic **g**raph. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% ## References * Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).