Notes on quotient sets, function kernels, and fibers.

c-declarations
Joshua Potter 2024-07-17 07:31:50 -06:00
parent 77138cec45
commit af53475ee2
16 changed files with 613 additions and 24 deletions

View File

@ -143,7 +143,8 @@
"function-surjective.png", "function-surjective.png",
"function-general.png", "function-general.png",
"church-rosser.png", "church-rosser.png",
"infinite-cartesian-product.png" "infinite-cartesian-product.png",
"function-kernel.png"
], ],
"File Hashes": { "File Hashes": {
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8", "algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
@ -187,7 +188,7 @@
"algorithms/loop-invariants.md": "cbefc346842c21a6cce5c5edce451eb2", "algorithms/loop-invariants.md": "cbefc346842c21a6cce5c5edce451eb2",
"algorithms/loop-invariant.md": "3b390e720f3b2a98e611b49a0bb1f5a9", "algorithms/loop-invariant.md": "3b390e720f3b2a98e611b49a0bb1f5a9",
"algorithms/running-time.md": "5efc0791097d2c996f931c9046c95f65", "algorithms/running-time.md": "5efc0791097d2c996f931c9046c95f65",
"algorithms/order-growth.md": "dd241870e1cfa0d43179a46213d5ed9c", "algorithms/order-growth.md": "8f6f38331bc4f7640f71794dd616bd23",
"_journal/2024-02-08.md": "19092bdfe378f31e2774f20d6afbfbac", "_journal/2024-02-08.md": "19092bdfe378f31e2774f20d6afbfbac",
"algorithms/sorting/selection-sort.md": "73415c44d6f4429f43c366078fd4bf98", "algorithms/sorting/selection-sort.md": "73415c44d6f4429f43c366078fd4bf98",
"algorithms/index 1.md": "6fada1f3d5d3af64687719eb465a5b97", "algorithms/index 1.md": "6fada1f3d5d3af64687719eb465a5b97",
@ -218,7 +219,7 @@
"encoding/ascii.md": "34350e7b5a4109bcd21f9f411fda0dbe", "encoding/ascii.md": "34350e7b5a4109bcd21f9f411fda0dbe",
"encoding/index.md": "071cfa6a5152efeda127b684f420d438", "encoding/index.md": "071cfa6a5152efeda127b684f420d438",
"c/strings.md": "aba6e449906d05aee98e3e536eb43742", "c/strings.md": "aba6e449906d05aee98e3e536eb43742",
"logic/truth-tables.md": "b00bf6d31f34bc2cae692642f823c8e1", "logic/truth-tables.md": "a9fe98af6cabc0e4b087086075e09af5",
"logic/short-circuit.md": "a3fb33603a38a6d3b268556dcbdfa797", "logic/short-circuit.md": "a3fb33603a38a6d3b268556dcbdfa797",
"logic/boolean-algebra.md": "56d2e0be2853d49b5dface7fa2d785a9", "logic/boolean-algebra.md": "56d2e0be2853d49b5dface7fa2d785a9",
"_journal/2024-02-13.md": "6242ed4fecabf95df6b45d892fee8eb0", "_journal/2024-02-13.md": "6242ed4fecabf95df6b45d892fee8eb0",
@ -274,7 +275,7 @@
"filesystems/cas.md": "d41c0d2e943adecbadd10a03fd1e4274", "filesystems/cas.md": "d41c0d2e943adecbadd10a03fd1e4274",
"git/objects.md": "4ad7a2ab275b5573055ea0433be1e4d7", "git/objects.md": "4ad7a2ab275b5573055ea0433be1e4d7",
"git/index.md": "ca842957bda479dfa1170ae85f2f37b8", "git/index.md": "ca842957bda479dfa1170ae85f2f37b8",
"encoding/integer.md": "ab0db8d48734867d42279fb2f2362d25", "encoding/integer.md": "f9786eab7f64ec63272dcca010961fe8",
"_journal/2024-02-29.md": "f610f3caed659c1de3eed5f226cab508", "_journal/2024-02-29.md": "f610f3caed659c1de3eed5f226cab508",
"_journal/2024-02/2024-02-28.md": "7489377c014a2ff3c535d581961b5b82", "_journal/2024-02/2024-02-28.md": "7489377c014a2ff3c535d581961b5b82",
"_journal/2024-03-01.md": "a532486279190b0c12954966cbf8c3fe", "_journal/2024-03-01.md": "a532486279190b0c12954966cbf8c3fe",
@ -461,7 +462,7 @@
"_journal/2024-05/2024-05-16.md": "9fdfadc3f9ea6a4418fd0e7066d6b10c", "_journal/2024-05/2024-05-16.md": "9fdfadc3f9ea6a4418fd0e7066d6b10c",
"_journal/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c", "_journal/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c",
"hashing/direct-addressing.md": "f75cc22e74ae974fe4f568a2ee9f951f", "hashing/direct-addressing.md": "f75cc22e74ae974fe4f568a2ee9f951f",
"hashing/index.md": "b643f6823777e4974e8d2c27255d975f", "hashing/index.md": "e3ab1dd55eb7bb97a73b48241a006deb",
"set/classes.md": "6776b4dc415021e0ef60b323b5c2d436", "set/classes.md": "6776b4dc415021e0ef60b323b5c2d436",
"_journal/2024-05-19.md": "fddd90fae08fab9bd83b0ef5d362c93a", "_journal/2024-05-19.md": "fddd90fae08fab9bd83b0ef5d362c93a",
"_journal/2024-05/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c", "_journal/2024-05/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c",
@ -484,7 +485,7 @@
"_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869", "_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869",
"_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae", "_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae",
"_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95", "_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95",
"algebra/set.md": "e88847f21b467e7d243ac3d5941a75a0", "algebra/set.md": "ecf6aef8bc64fc14a73178adcdd3594e",
"algebra/boolean.md": "ee41e624f4d3d3aca00020d9a9ae42c8", "algebra/boolean.md": "ee41e624f4d3d3aca00020d9a9ae42c8",
"git/merge-conflicts.md": "761ad6137ec51d3877f7d5b3615ca5cb", "git/merge-conflicts.md": "761ad6137ec51d3877f7d5b3615ca5cb",
"_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337", "_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337",
@ -509,7 +510,7 @@
"_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1", "_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1",
"_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a", "_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a",
"_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1", "_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1",
"set/relations.md": "1daa000a3b57d4335783cf4fd759c746", "set/relations.md": "2750a1f7f82dfd146779c02572f8bfe9",
"_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2", "_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2",
"_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381", "_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381",
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8", "_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
@ -535,10 +536,10 @@
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e", "_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", "_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728", "_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
"set/functions.md": "cd38f47de7e4ecf3a55434865efa6877", "set/functions.md": "b41c04a596a7e711801c32eff9333a3e",
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4", "_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", "_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
"lambda-calculus/beta-reduction.md": "e233c8352a8180d19f7b717946c379d1", "lambda-calculus/beta-reduction.md": "e40e64be380bbe7852cfe6a310e400bf",
"_journal/2024-06-16.md": "ded6ab660ecc7c3dce3afd2e88e5a725", "_journal/2024-06-16.md": "ded6ab660ecc7c3dce3afd2e88e5a725",
"_journal/2024-06/2024-06-15.md": "c3a55549da9dfc2770bfcf403bf5b30b", "_journal/2024-06/2024-06-15.md": "c3a55549da9dfc2770bfcf403bf5b30b",
"_journal/2024-06-17.md": "63df6757bb3384e45093bf2b9456ffac", "_journal/2024-06-17.md": "63df6757bb3384e45093bf2b9456ffac",
@ -598,11 +599,18 @@
"_journal/2024-07/2024-07-12.md": "6603ed8a3f9a9e87bf40e81b03e96356", "_journal/2024-07/2024-07-12.md": "6603ed8a3f9a9e87bf40e81b03e96356",
"hashing/static.md": "3ec6eaee73fb9b599700f5a56b300b83", "hashing/static.md": "3ec6eaee73fb9b599700f5a56b300b83",
"hashing/addressing.md": "a78c0cbea13bc9deeadb2fc643c122ce", "hashing/addressing.md": "a78c0cbea13bc9deeadb2fc643c122ce",
"ontology/index.md": "13e47f12ae5cf9816165c3e4f4090c1f", "ontology/index.md": "15e97e3e8068660314499fb4d1bdd53e",
"ontology/permissivism.md": "5b66dd065aa66d5a2624eda032d75b94", "ontology/permissivism.md": "5b66dd065aa66d5a2624eda032d75b94",
"ontology/properties.md": "d417db0cecf11b1ed2e17f165d879fa5", "ontology/properties.md": "d417db0cecf11b1ed2e17f165d879fa5",
"_journal/2024-07-14.md": "9a74d2dd0f44db58e14f57c8908c3342", "_journal/2024-07-14.md": "9a74d2dd0f44db58e14f57c8908c3342",
"_journal/2024-07/2024-07-13.md": "60e8eb09812660a2f2bf86ffafab5714" "_journal/2024-07/2024-07-13.md": "60e8eb09812660a2f2bf86ffafab5714",
"_journal/2024-07-15.md": "462fb4294cbbe8855071c638351df147",
"_journal/2024-07/2024-07-14.md": "c4666b502d97387e05fb77c4139cae23",
"_journal/2024-07-16.md": "0f3832a9afc331597e626864f24d6498",
"_journal/2024-07/2024-07-15.md": "462fb4294cbbe8855071c638351df147",
"ontology/nominalism.md": "46245c644238157e15c7cb6def27d90a",
"_journal/2024-07-17.md": "e0371a91e99f131e7258cc82c2a04cc8",
"_journal/2024-07/2024-07-16.md": "149222eab7a7f58993b8e4dc8a3fb884"
}, },
"fields_dict": { "fields_dict": {
"Basic": [ "Basic": [

View File

@ -0,0 +1,11 @@
---
title: "2024-07-17"
---
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Notes on [[relations#Quotient Sets|quotient sets]], function [[functions#Kernels|kernels]], and fibers.

View File

@ -11,4 +11,5 @@ title: "2024-07-14"
* Notes on [[set#Cartesian Product|infinite Cartesian products]] and their relation to the [[set/index#Infinite Cartesian Product Form|axiom of choice]]. * Notes on [[set#Cartesian Product|infinite Cartesian products]] and their relation to the [[set/index#Infinite Cartesian Product Form|axiom of choice]].
* Initial notes on [[relations#Equivalence Relations|equivalence relations]]. * Initial notes on [[relations#Equivalence Relations|equivalence relations]].
* Read chapter 2 "How to Raise Money" in "Venture Deals". * Read chapter 2 "How to Raise Money" in "Venture Deals".
* Finished another read of "A Cardinal Worry for Permissive Metaontology". * Finished another read of "A Cardinal Worry for Permissive Metaontology".
* Watched [Lecture 1 "Introduction to Ontology"](https://www.youtube.com/watch?v=9AsRE437e7I).

View File

@ -0,0 +1,11 @@
---
title: "2024-07-15"
---
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Notes on [[relations#Partitions|partitions]] and equivalence classes.

View File

@ -0,0 +1,11 @@
---
title: "2024-07-16"
---
- [x] Anki Flashcards
- [x] KoL
- [ ] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Brief notes on [[nominalism]].

View File

@ -93,7 +93,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Suppose $x, y \in A$. What set is $\langle x, y \rangle$ in? Suppose $x, y \in A$. What set, derived from $A$, is $\langle x, y \rangle$ a member of?
Back: $\mathscr{P}\mathscr{P}A$ Back: $\mathscr{P}\mathscr{P}A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679397848--> <!--ID: 1717679397848-->
@ -758,8 +758,8 @@ Let $A$, $B$, and $C$ be arbitrary sets. Then
%%ANKI %%ANKI
Basic Basic
What kind of propositional logical statement are the monotonicity properties of $\subseteq$? The monotonicity properties of $\subseteq$ are what kind of propositional logical statement?
Back: An implication. Back: Implications.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717073536967--> <!--ID: 1717073536967-->
END%% END%%

View File

@ -690,7 +690,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
What names are usually given to the existentially quantified identifers in $o(g(n))$'s definition? What names are usually given to the existentially quantified identifers in $o(g(n))$'s definition?
Back: $n_0$. Back: $n_0$
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1709519002328--> <!--ID: 1709519002328-->
END%% END%%
@ -1035,7 +1035,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
What is the symmetric property of $\Omega$-notation? What is the symmetric property of $\Omega$-notation?
Back: N/A Back: N/A.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1709752223486--> <!--ID: 1709752223486-->
END%% END%%

View File

@ -557,7 +557,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
What is the precise definition of the two's-complement of a $w$-bit number? What is the precise definition of the two's-complement of a $w$-bit number $x$?
Back: The complement of $x$ with respect to $2^w$. Back: The complement of $x$ with respect to $2^w$.
Reference: “Twos-Complement.” In *Wikipedia*, January 9, 2024. [https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561](https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561). Reference: “Twos-Complement.” In *Wikipedia*, January 9, 2024. [https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561](https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561).
<!--ID: 1709060837145--> <!--ID: 1709060837145-->

View File

@ -404,7 +404,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Let $h$ be a division method hash function. What does $h(10)$ evaluate to? Let $h$ be a division method hash function. What does $h(10)$ evaluate to?
Back: $10 \bmod{m}$ where $m$ is the number of slots in the hash table. Back: To $10 \bmod{m}$, where $m$ is the number of slots in the hash table.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: hashing::static Tags: hashing::static
<!--ID: 1720889385419--> <!--ID: 1720889385419-->
@ -428,6 +428,14 @@ Tags: hashing::static
<!--ID: 1720889385429--> <!--ID: 1720889385429-->
END%% END%%
%%ANKI
Basic
Why does the division method prefer a prime number of slots?
Back: To operate as independently as possible of the input keys.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1721218408542-->
END%%
%%ANKI %%ANKI
Basic Basic
Consider hash function $h(k) = k \bmod{m}$. What method was likely used to produce this? Consider hash function $h(k) = k \bmod{m}$. What method was likely used to produce this?

View File

@ -567,7 +567,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
What does the Church-Rosser theorem state in terms of confluence? What does the Church-Rosser theorem for $\triangleright_\beta$ state in terms of confluence?
Back: $\beta$-reduction is confluent. Back: $\beta$-reduction is confluent.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719577152613--> <!--ID: 1719577152613-->

View File

@ -50,7 +50,7 @@ $$
%%ANKI %%ANKI
Basic Basic
What construct is used to prove every proposition can be written in DNF or CNF? What construct is used to prove every proposition can be written in DNF or CNF?
Back: Truth tables Back: Truth tables.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707311868994--> <!--ID: 1707311868994-->
END%% END%%

View File

@ -21,7 +21,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Who is attributed *the* ontological question? Who is attributed *the* ontological question?
Back: Quine. Back: Willard Van Orman Quine.
Reference: Simon Hewitt, “A Cardinal Worry for Permissive Metaontology,” _Metaphysica_ 16, no. 2 (September 18, 2015): 15965, [https://doi.org/10.1515/mp-2015-0009](https://doi.org/10.1515/mp-2015-0009). Reference: Simon Hewitt, “A Cardinal Worry for Permissive Metaontology,” _Metaphysica_ 16, no. 2 (September 18, 2015): 15965, [https://doi.org/10.1515/mp-2015-0009](https://doi.org/10.1515/mp-2015-0009).
<!--ID: 1720912259767--> <!--ID: 1720912259767-->
END%% END%%

View File

@ -0,0 +1,47 @@
---
title: Nominalism
TARGET DECK: Obsidian::H&SS
FILE TAGS: ontology::nominalism
tags:
- nominalism
- ontology
---
## Overview
**Anti-realists** about a category are those who don't believe entities of said category exist. **Realists** about a category are those that do. **Nominalism** refers to the stance that no abstract objects exist. That is, nominalists are anti-realists in regards to abstract entities.
%%ANKI
Basic
What does it mean for a person to be anti-realist about category $X$?
Back: They do not believe entities of $X$ exist.
Reference: Nikk Effingham, _An Introduction to Ontology_ (Cambridge: Polity Press, 2013).
<!--ID: 1721137271035-->
END%%
%%ANKI
Basic
What does it mean for a person to be realist about category $X$?
Back: They believe entities belonging to $X$ exist.
Reference: Nikk Effingham, _An Introduction to Ontology_ (Cambridge: Polity Press, 2013).
<!--ID: 1721137271065-->
END%%
%%ANKI
Basic
How does Effingham define nominalism?
Back: As anti-realism towards abstracta.
Reference: Nikk Effingham, _An Introduction to Ontology_ (Cambridge: Polity Press, 2013).
<!--ID: 1721137271072-->
END%%
%%ANKI
Cloze
Roughly speaking, {1:permissivism} is to {2:realism} whereas {2:nominalism} is to {1:anti-realism}.
Reference: Nikk Effingham, _An Introduction to Ontology_ (Cambridge: Polity Press, 2013).
<!--ID: 1721137271080-->
END%%
## Bibliography
* Nikk Effingham, _An Introduction to Ontology_ (Cambridge: Polity Press, 2013).

View File

@ -1327,7 +1327,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Consider sets $A$ and $B$. How is $A \cap B$ be rewritten as a function under some image? Consider sets $A$ and $B$. How is $A \cap B$ rewritten as a function under some image?
Back: $I_A[\![B]\!]$ Back: $I_A[\![B]\!]$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720885546358--> <!--ID: 1720885546358-->
@ -1634,7 +1634,174 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1720819771087--> <!--ID: 1720819771087-->
END%% END%%
## Kernels
Let $F \colon A \rightarrow B$. Define [[relations#Equivalence Relations|equivalence relation]] $\sim$ as $$x \sim y \Leftrightarrow f(x) = f(y)$$
Relation $\sim$ is called the **(equivalence) kernel** of $f$. The [[relations#Partitions|partition]] induced by $\sim$ on $A$ is called the **coimage** of $f$ (denoted $\mathop{\text{coim}}f$). The **fiber** of an element $y$ under $F$ is $F^{-1}[\![\{y\}]\!]$, i.e. the preimage of singleton set $\{y\}$. Therefore the equivalence classes of $\sim$ are also known as the fibers of $f$.
%%ANKI
Basic
What kind of mathematical object is the kernel of $F \colon A \rightarrow B$?
Back: An equivalence relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015583-->
END%%
%%ANKI
Basic
How is the kernel of $F \colon A \rightarrow B$ defined?
Back: As equivalence relation $\sim$ such that $x \sim y \Leftrightarrow F(x) = F(y)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015586-->
END%%
%%ANKI
Basic
Let $F \colon A \rightarrow B$. What name does the following relation $\sim$ go by? $$x \sim y \Leftrightarrow F(x) = F(y)$$
Back: The kernel of $F$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015590-->
END%%
%%ANKI
Basic
Let $F \colon A \rightarrow B$. The partition induced by the kernel of $F$ is a partition of what set?
Back: $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015593-->
END%%
%%ANKI
Basic
Let $F \colon A \rightarrow B$. What does $\mathop{\text{coim}}F$ refer to?
Back: The coimage of $F$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015596-->
END%%
%%ANKI
Basic
How is the coimage of function $F \colon A \rightarrow B$ defined?
Back: As $A / {\sim}$ where $x \sim y \Leftrightarrow F(x) = F(y)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015599-->
END%%
%%ANKI
Basic
Let $F \colon A \rightarrow B$. What specific name does a member of $\mathop{\text{coim}}F$ go by?
Back: A fiber.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015602-->
END%%
%%ANKI
Basic
Let $F \colon A \rightarrow B$. How is the fiber of $y$ under $F$ defined?
Back: As set $F^{-1}[\![\{y\}]\!]$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015605-->
END%%
%%ANKI
Basic
Let $F \colon A \rightarrow B$. The fibers of $F$ make up what set?
Back: $\mathop{\text{coim}}F$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015609-->
END%%
%%ANKI
Basic
Let $F \colon A \rightarrow B$. How is $\mathop{\text{coim}}F$ denoted as a quotient set?
Back: As $A / {\sim}$ where $x \sim y \Leftrightarrow F(x) = F(y)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015613-->
END%%
%%ANKI
Basic
Let $F \colon A \rightarrow B$ and $\sim$ be the kernel of $F$. How does $F$ factor into $\hat{F} \colon A / {\sim} \rightarrow B$?
Back: $F = \hat{F} \circ \phi$ where $\phi$ is the natural map.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015617-->
END%%
%%ANKI
Basic
Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. What name does $\phi$ go by?
![[function-kernel.png]]
Back: The natural map (with respect to $\sim$).
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015620-->
END%%
%%ANKI
Basic
Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. How is $\phi$ defined?
![[function-kernel.png]]
Back: $\phi(x) = [x]_{\sim}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015624-->
END%%
%%ANKI
Basic
Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. What name does $\sim$ go by?
![[function-kernel.png]]
Back: $\mathop{\text{coim}} F$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015628-->
END%%
%%ANKI
Basic
Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. What name do the members of $A / {\sim}$ go by?
![[function-kernel.png]]
Back: The fibers of $F$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015633-->
END%%
%%ANKI
Basic
Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. What composition is $F$ equal to?
![[function-kernel.png]]
Back: $F = \hat{F} \circ \phi$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015638-->
END%%
%%ANKI
Basic
Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. Is $\hat{F}$ injective?
![[function-kernel.png]]
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015642-->
END%%
%%ANKI
Basic
Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. Is $\hat{F}$ surjective?
![[function-kernel.png]]
Back: Not necessarily.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015646-->
END%%
%%ANKI
Basic
Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. Is $\hat{F}$ bijective?
![[function-kernel.png]]
Back: Not necessarily.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015650-->
END%%
## Bibliography ## Bibliography
* “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). * “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163).
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). * “Fiber (Mathematics),” in _Wikipedia_, April 10, 2024, [https://en.wikipedia.org/w/index.php?title=Fiber_(mathematics)&oldid=1218193490](https://en.wikipedia.org/w/index.php?title=Fiber_(mathematics)&oldid=1218193490).
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
* “Kernel (Set Theory),” in _Wikipedia_, May 22, 2024, [https://en.wikipedia.org/w/index.php?title=Kernel_(set_theory)&oldid=1225189560](https://en.wikipedia.org/w/index.php?title=Kernel_(set_theory)&oldid=1225189560).

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

View File

@ -803,6 +803,331 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1720969371869--> <!--ID: 1720969371869-->
END%% END%%
The set $[x]_R$ is defined by $[x]_R = \{t \mid xRt\}$. If $R$ is an equivalence relation and $x \in \mathop{\text{fld}}R$, then $[x]_R$ is called the **equivalence class of $x$ (modulo $R$)**. If the relation $R$ is fixed by the context, we may write just $[x]$.
%%ANKI
Basic
How is set $[x]_R$ defined?
Back: As $\{t \mid xRt\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094107-->
END%%
%%ANKI
Basic
What is an equivalence class?
Back: A set of members mutually related w.r.t an equivalence relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015574-->
END%%
%%ANKI
Basic
What kind of mathematical object is $x$ in $[x]_R$?
Back: A set (or urelement).
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094110-->
END%%
%%ANKI
Basic
What kind of mathematical object is $R$ in $[x]_R$?
Back: A relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094114-->
END%%
%%ANKI
Basic
What compact notation is used to denote $\{t \mid xRt\}$?
Back: $[x]_R$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094120-->
END%%
%%ANKI
Cloze
If {1:$R$ is an equivalence relation} and {1:$x \in \mathop{\text{fld} }R$}, then $[x]_R$ is called the {2:equivalence class of $x$} (modulo {2:$R$}).
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094128-->
END%%
%%ANKI
Basic
Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $x$?
Back: A set (or urelement).
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094137-->
END%%
%%ANKI
Basic
Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $R$?
Back: A relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094144-->
END%%
%%ANKI
Basic
Consider an equivalence class of $x$ (modulo $R$). What condition does $x$ necessarily satisfy?
Back: $x \in \mathop{\text{fld}}R$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094149-->
END%%
%%ANKI
Basic
Consider an equivalence class of $x$ (modulo $R$). What condition does $R$ necessarily satisfy?
Back: $R$ is an equivalence relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094154-->
END%%
%%ANKI
Cloze
Assume $R$ is an equivalence relation on $A$ and that $x, y \in A$. Then {1:$[x]_R$} $=$ {1:$[y]_R$} iff {2:$xRy$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094158-->
END%%
## Partitions
A **partition** $\Pi$ of a set $A$ is a set of nonempty subsets of $A$ that is disjoint and exhaustive.
%%ANKI
Basic
What kind of mathematical object is a partition of a set?
Back: A set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094026-->
END%%
%%ANKI
Basic
What is a partition of a set $A$?
Back: A set of nonempty subsets of $A$ that is disjoint and exhaustive.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094053-->
END%%
%%ANKI
Basic
Let $\Pi$ be a partition of a set $A$. When does $\Pi = \varnothing$?
Back: If and only if $A = \varnothing$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094059-->
END%%
%%ANKI
Basic
Let $\Pi$ be a partition of set $A$. What property must each *individual* member of $\Pi$ exhibit?
Back: Each member is nonempty.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094065-->
END%%
%%ANKI
Basic
Let $\Pi$ be a partition of set $A$. What property must each *pair* of members of $\Pi$ exhibit?
Back: Each pair must be disjoint.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094072-->
END%%
%%ANKI
Basic
Let $\Pi$ be a partition of set $A$. Which property do all the members of $\Pi$ exhibit together?
Back: The members of $\Pi$ must be exhaustive.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094077-->
END%%
%%ANKI
Basic
What does it mean for a partition $\Pi$ of $A$ to be exhaustive?
Back: Every member of $A$ must appear in one of the members of $\Pi$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094082-->
END%%
%%ANKI
Basic
Is $A$ a partition of set $A$?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094086-->
END%%
%%ANKI
Basic
Is $\{A\}$ a partition of set $A$?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094091-->
END%%
%%ANKI
Basic
Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1, 2\}, \{2, 3, 4\}\}$ a partition of $A$?
Back: Each pair of members of a partition of $A$ must be disjoint.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094095-->
END%%
%%ANKI
Basic
Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1\}, \{2\}, \{3\}\}$ a partition of $A$?
Back: The members of a partition of $A$ must be exhaustive.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094099-->
END%%
%%ANKI
Basic
Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1, 2, 3\}, \{4\}\}$ a partition of $A$?
Back: N/A. It is.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094103-->
END%%
Assume $\Pi$ is a partition of set $A$. Then the relation $R$ is an equivalence relation: $$xRy \Leftrightarrow (\exists B \in \Pi, x \in B \land y \in B)$$
%%ANKI
Basic
Let $\Pi$ be a partition of $A$. What equivalence relation $R$ is induced?
Back: $R$ such that $xRy \Leftrightarrow (\exists B \in \Pi, x \in B \land y \in B)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721136390215-->
END%%
## Quotient Sets
If $R$ is an equivalence relation on $A$, then the **quotient set** "$A$ modulo $R$" is defined as $$A / R = \{[x]_R \mid x \in A\}.$$
The **natural map** (or **canonical map**) $\phi : A \rightarrow A / R$ is given by $$\phi(x) = [x]_R.$$
Note that $A / R$, the set of all equivalence classes, is a partition of $A$.
%%ANKI
Basic
Let $R$ be an equivalence relation on $A$. What partition is induced?
Back: $A / R = \{[x]_R \mid x \in A\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721136390208-->
END%%
%%ANKI
Basic
Members of $A / R$ are called what?
Back: Equivalence classes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408454-->
END%%
%%ANKI
Basic
$A / R$ is a partition of what set?
Back: $A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408484-->
END%%
%%ANKI
Basic
How is quotient set $A / R$ pronounced?
Back: As "$A$ modulo $R$".
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408508-->
END%%
%%ANKI
Basic
Consider quotient set $A / R$. What kind of mathematical object is $A$?
Back: A set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408514-->
END%%
%%ANKI
Basic
Consider quotient set $A / R$. What kind of mathematical object is $R$?
Back: An equivalence relation on $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408520-->
END%%
%%ANKI
Basic
How is quotient set $A / R$ defined?
Back: As set $\{[x]_R \mid x \in A\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408525-->
END%%
%%ANKI
Basic
Given quotient set $A / R$, what is the domain of its natural map?
Back: $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408490-->
END%%
%%ANKI
Basic
Given quotient set $A / R$, what is the codomain of its natural map?
Back: $A / R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408495-->
END%%
%%ANKI
Basic
Consider quotient set $A / R$. How is the natural map $\phi$ defined?
Back: $\phi \colon A \rightarrow A / R$ given by $\phi(x) = [x]_R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408501-->
END%%
%%ANKI
Basic
Given quotient set $A / R$, what is the domain of its canonical map?
Back: $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408531-->
END%%
%%ANKI
Basic
Given quotient set $A / R$, what is the codomain of its canonical map?
Back: $A / R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218408537-->
END%%
%%ANKI
Basic
Consider quotient set $A / R$. How is the canonical map $\phi$ defined?
Back: $\phi \colon A \rightarrow A / R$ given by $\phi(x) = [x]_R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721218465987-->
END%%
%%ANKI
Basic
Consider set $\omega$ and equivalence relation $\sim$. How is the relevant quotient set denoted?
Back: As $\omega / {\sim}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721219061765-->
END%%
%%ANKI
Cloze
Let $R$ be an equivalence relation on $A$ and $x \in A$. Then {1:$x$ (modulo $R$)} is an {2:equivalence class} whereas {2:$A$ modulo $R$} is a {1:quotient set}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721223015580-->
END%%
## Bibliography ## Bibliography
* “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305). * “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).