diff --git a/notes/.obsidian/plugins/obsidian-to-anki-plugin/data.json b/notes/.obsidian/plugins/obsidian-to-anki-plugin/data.json index c64778c..bbdbcb4 100644 --- a/notes/.obsidian/plugins/obsidian-to-anki-plugin/data.json +++ b/notes/.obsidian/plugins/obsidian-to-anki-plugin/data.json @@ -143,7 +143,8 @@ "function-surjective.png", "function-general.png", "church-rosser.png", - "infinite-cartesian-product.png" + "infinite-cartesian-product.png", + "function-kernel.png" ], "File Hashes": { "algorithms/index.md": "3ac071354e55242919cc574eb43de6f8", @@ -187,7 +188,7 @@ "algorithms/loop-invariants.md": "cbefc346842c21a6cce5c5edce451eb2", "algorithms/loop-invariant.md": "3b390e720f3b2a98e611b49a0bb1f5a9", "algorithms/running-time.md": "5efc0791097d2c996f931c9046c95f65", - "algorithms/order-growth.md": "dd241870e1cfa0d43179a46213d5ed9c", + "algorithms/order-growth.md": "8f6f38331bc4f7640f71794dd616bd23", "_journal/2024-02-08.md": "19092bdfe378f31e2774f20d6afbfbac", "algorithms/sorting/selection-sort.md": "73415c44d6f4429f43c366078fd4bf98", "algorithms/index 1.md": "6fada1f3d5d3af64687719eb465a5b97", @@ -218,7 +219,7 @@ "encoding/ascii.md": "34350e7b5a4109bcd21f9f411fda0dbe", "encoding/index.md": "071cfa6a5152efeda127b684f420d438", "c/strings.md": "aba6e449906d05aee98e3e536eb43742", - "logic/truth-tables.md": "b00bf6d31f34bc2cae692642f823c8e1", + "logic/truth-tables.md": "a9fe98af6cabc0e4b087086075e09af5", "logic/short-circuit.md": "a3fb33603a38a6d3b268556dcbdfa797", "logic/boolean-algebra.md": "56d2e0be2853d49b5dface7fa2d785a9", "_journal/2024-02-13.md": "6242ed4fecabf95df6b45d892fee8eb0", @@ -274,7 +275,7 @@ "filesystems/cas.md": "d41c0d2e943adecbadd10a03fd1e4274", "git/objects.md": "4ad7a2ab275b5573055ea0433be1e4d7", "git/index.md": "ca842957bda479dfa1170ae85f2f37b8", - "encoding/integer.md": "ab0db8d48734867d42279fb2f2362d25", + "encoding/integer.md": "f9786eab7f64ec63272dcca010961fe8", "_journal/2024-02-29.md": "f610f3caed659c1de3eed5f226cab508", "_journal/2024-02/2024-02-28.md": "7489377c014a2ff3c535d581961b5b82", "_journal/2024-03-01.md": "a532486279190b0c12954966cbf8c3fe", @@ -461,7 +462,7 @@ "_journal/2024-05/2024-05-16.md": "9fdfadc3f9ea6a4418fd0e7066d6b10c", "_journal/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c", "hashing/direct-addressing.md": "f75cc22e74ae974fe4f568a2ee9f951f", - "hashing/index.md": "b643f6823777e4974e8d2c27255d975f", + "hashing/index.md": "e3ab1dd55eb7bb97a73b48241a006deb", "set/classes.md": "6776b4dc415021e0ef60b323b5c2d436", "_journal/2024-05-19.md": "fddd90fae08fab9bd83b0ef5d362c93a", "_journal/2024-05/2024-05-18.md": "c0b58b28f84b31cea91404f43b0ee40c", @@ -484,7 +485,7 @@ "_journal/2024-05/2024-05-25.md": "3e8a0061fa58a6e5c48d12800d1ab869", "_journal/2024-05-27.md": "b36636d10eab34380f17f288868df3ae", "_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95", - "algebra/set.md": "e88847f21b467e7d243ac3d5941a75a0", + "algebra/set.md": "ecf6aef8bc64fc14a73178adcdd3594e", "algebra/boolean.md": "ee41e624f4d3d3aca00020d9a9ae42c8", "git/merge-conflicts.md": "761ad6137ec51d3877f7d5b3615ca5cb", "_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337", @@ -509,7 +510,7 @@ "_journal/2024-06/2024-06-04.md": "52b28035b9c91c9b14cef1154c1a0fa1", "_journal/2024-06-06.md": "3f9109925dea304e7172df39922cc95a", "_journal/2024-06/2024-06-05.md": "b06a0fa567bd81e3b593f7e1838f9de1", - "set/relations.md": "1daa000a3b57d4335783cf4fd759c746", + "set/relations.md": "2750a1f7f82dfd146779c02572f8bfe9", "_journal/2024-06-07.md": "795be41cc3c9c0f27361696d237604a2", "_journal/2024-06/2024-06-06.md": "db3407dcc86fa759b061246ec9fbd381", "_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8", @@ -535,10 +536,10 @@ "_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e", "_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", "_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728", - "set/functions.md": "cd38f47de7e4ecf3a55434865efa6877", + "set/functions.md": "b41c04a596a7e711801c32eff9333a3e", "_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4", "_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", - "lambda-calculus/beta-reduction.md": "e233c8352a8180d19f7b717946c379d1", + "lambda-calculus/beta-reduction.md": "e40e64be380bbe7852cfe6a310e400bf", "_journal/2024-06-16.md": "ded6ab660ecc7c3dce3afd2e88e5a725", "_journal/2024-06/2024-06-15.md": "c3a55549da9dfc2770bfcf403bf5b30b", "_journal/2024-06-17.md": "63df6757bb3384e45093bf2b9456ffac", @@ -598,11 +599,18 @@ "_journal/2024-07/2024-07-12.md": "6603ed8a3f9a9e87bf40e81b03e96356", "hashing/static.md": "3ec6eaee73fb9b599700f5a56b300b83", "hashing/addressing.md": "a78c0cbea13bc9deeadb2fc643c122ce", - "ontology/index.md": "13e47f12ae5cf9816165c3e4f4090c1f", + "ontology/index.md": "15e97e3e8068660314499fb4d1bdd53e", "ontology/permissivism.md": "5b66dd065aa66d5a2624eda032d75b94", "ontology/properties.md": "d417db0cecf11b1ed2e17f165d879fa5", "_journal/2024-07-14.md": "9a74d2dd0f44db58e14f57c8908c3342", - "_journal/2024-07/2024-07-13.md": "60e8eb09812660a2f2bf86ffafab5714" + "_journal/2024-07/2024-07-13.md": "60e8eb09812660a2f2bf86ffafab5714", + "_journal/2024-07-15.md": "462fb4294cbbe8855071c638351df147", + "_journal/2024-07/2024-07-14.md": "c4666b502d97387e05fb77c4139cae23", + "_journal/2024-07-16.md": "0f3832a9afc331597e626864f24d6498", + "_journal/2024-07/2024-07-15.md": "462fb4294cbbe8855071c638351df147", + "ontology/nominalism.md": "46245c644238157e15c7cb6def27d90a", + "_journal/2024-07-17.md": "e0371a91e99f131e7258cc82c2a04cc8", + "_journal/2024-07/2024-07-16.md": "149222eab7a7f58993b8e4dc8a3fb884" }, "fields_dict": { "Basic": [ diff --git a/notes/_journal/2024-07-17.md b/notes/_journal/2024-07-17.md new file mode 100644 index 0000000..c11ac15 --- /dev/null +++ b/notes/_journal/2024-07-17.md @@ -0,0 +1,11 @@ +--- +title: "2024-07-17" +--- + +- [x] Anki Flashcards +- [x] KoL +- [x] OGS +- [ ] Sheet Music (10 min.) +- [ ] Korean (Read 1 Story) + +* Notes on [[relations#Quotient Sets|quotient sets]], function [[functions#Kernels|kernels]], and fibers. \ No newline at end of file diff --git a/notes/_journal/2024-07-14.md b/notes/_journal/2024-07/2024-07-14.md similarity index 82% rename from notes/_journal/2024-07-14.md rename to notes/_journal/2024-07/2024-07-14.md index 1cf40ac..5397f85 100644 --- a/notes/_journal/2024-07-14.md +++ b/notes/_journal/2024-07/2024-07-14.md @@ -11,4 +11,5 @@ title: "2024-07-14" * Notes on [[set#Cartesian Product|infinite Cartesian products]] and their relation to the [[set/index#Infinite Cartesian Product Form|axiom of choice]]. * Initial notes on [[relations#Equivalence Relations|equivalence relations]]. * Read chapter 2 "How to Raise Money" in "Venture Deals". -* Finished another read of "A Cardinal Worry for Permissive Metaontology". \ No newline at end of file +* Finished another read of "A Cardinal Worry for Permissive Metaontology". +* Watched [Lecture 1 "Introduction to Ontology"](https://www.youtube.com/watch?v=9AsRE437e7I). \ No newline at end of file diff --git a/notes/_journal/2024-07/2024-07-15.md b/notes/_journal/2024-07/2024-07-15.md new file mode 100644 index 0000000..394ac9a --- /dev/null +++ b/notes/_journal/2024-07/2024-07-15.md @@ -0,0 +1,11 @@ +--- +title: "2024-07-15" +--- + +- [x] Anki Flashcards +- [x] KoL +- [x] OGS +- [ ] Sheet Music (10 min.) +- [ ] Korean (Read 1 Story) + +* Notes on [[relations#Partitions|partitions]] and equivalence classes. \ No newline at end of file diff --git a/notes/_journal/2024-07/2024-07-16.md b/notes/_journal/2024-07/2024-07-16.md new file mode 100644 index 0000000..e35bd5d --- /dev/null +++ b/notes/_journal/2024-07/2024-07-16.md @@ -0,0 +1,11 @@ +--- +title: "2024-07-16" +--- + +- [x] Anki Flashcards +- [x] KoL +- [ ] OGS +- [ ] Sheet Music (10 min.) +- [ ] Korean (Read 1 Story) + +* Brief notes on [[nominalism]]. \ No newline at end of file diff --git a/notes/algebra/set.md b/notes/algebra/set.md index dc0d2b6..6d65fb5 100644 --- a/notes/algebra/set.md +++ b/notes/algebra/set.md @@ -93,7 +93,7 @@ END%% %%ANKI Basic -Suppose $x, y \in A$. What set is $\langle x, y \rangle$ in? +Suppose $x, y \in A$. What set, derived from $A$, is $\langle x, y \rangle$ a member of? Back: $\mathscr{P}\mathscr{P}A$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). @@ -758,8 +758,8 @@ Let $A$, $B$, and $C$ be arbitrary sets. Then %%ANKI Basic -What kind of propositional logical statement are the monotonicity properties of $\subseteq$? -Back: An implication. +The monotonicity properties of $\subseteq$ are what kind of propositional logical statement? +Back: Implications. Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). END%% diff --git a/notes/algorithms/order-growth.md b/notes/algorithms/order-growth.md index fae433e..ccae8cb 100644 --- a/notes/algorithms/order-growth.md +++ b/notes/algorithms/order-growth.md @@ -690,7 +690,7 @@ END%% %%ANKI Basic What names are usually given to the existentially quantified identifers in $o(g(n))$'s definition? -Back: $n_0$. +Back: $n_0$ Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% @@ -1035,7 +1035,7 @@ END%% %%ANKI Basic What is the symmetric property of $\Omega$-notation? -Back: N/A +Back: N/A. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). END%% diff --git a/notes/encoding/integer.md b/notes/encoding/integer.md index 46a74cb..d1adaf4 100644 --- a/notes/encoding/integer.md +++ b/notes/encoding/integer.md @@ -557,7 +557,7 @@ END%% %%ANKI Basic -What is the precise definition of the two's-complement of a $w$-bit number? +What is the precise definition of the two's-complement of a $w$-bit number $x$? Back: The complement of $x$ with respect to $2^w$. Reference: “Two’s-Complement.” In *Wikipedia*, January 9, 2024. [https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561](https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561). diff --git a/notes/hashing/index.md b/notes/hashing/index.md index 615016a..46c7db4 100644 --- a/notes/hashing/index.md +++ b/notes/hashing/index.md @@ -404,7 +404,7 @@ END%% %%ANKI Basic Let $h$ be a division method hash function. What does $h(10)$ evaluate to? -Back: $10 \bmod{m}$ where $m$ is the number of slots in the hash table. +Back: To $10 \bmod{m}$, where $m$ is the number of slots in the hash table. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: hashing::static @@ -428,6 +428,14 @@ Tags: hashing::static END%% +%%ANKI +Basic +Why does the division method prefer a prime number of slots? +Back: To operate as independently as possible of the input keys. +Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). + +END%% + %%ANKI Basic Consider hash function $h(k) = k \bmod{m}$. What method was likely used to produce this? diff --git a/notes/lambda-calculus/beta-reduction.md b/notes/lambda-calculus/beta-reduction.md index 38e9a5f..3c9da5f 100644 --- a/notes/lambda-calculus/beta-reduction.md +++ b/notes/lambda-calculus/beta-reduction.md @@ -567,7 +567,7 @@ END%% %%ANKI Basic -What does the Church-Rosser theorem state in terms of confluence? +What does the Church-Rosser theorem for $\triangleright_\beta$ state in terms of confluence? Back: $\beta$-reduction is confluent. Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf). diff --git a/notes/logic/truth-tables.md b/notes/logic/truth-tables.md index 0e70cc7..15d7471 100644 --- a/notes/logic/truth-tables.md +++ b/notes/logic/truth-tables.md @@ -50,7 +50,7 @@ $$ %%ANKI Basic What construct is used to prove every proposition can be written in DNF or CNF? -Back: Truth tables +Back: Truth tables. Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981. END%% diff --git a/notes/ontology/index.md b/notes/ontology/index.md index 6c4b70f..b8f633f 100644 --- a/notes/ontology/index.md +++ b/notes/ontology/index.md @@ -21,7 +21,7 @@ END%% %%ANKI Basic Who is attributed *the* ontological question? -Back: Quine. +Back: Willard Van Orman Quine. Reference: Simon Hewitt, “A Cardinal Worry for Permissive Metaontology,” _Metaphysica_ 16, no. 2 (September 18, 2015): 159–65, [https://doi.org/10.1515/mp-2015-0009](https://doi.org/10.1515/mp-2015-0009). END%% diff --git a/notes/ontology/nominalism.md b/notes/ontology/nominalism.md new file mode 100644 index 0000000..5560413 --- /dev/null +++ b/notes/ontology/nominalism.md @@ -0,0 +1,47 @@ +--- +title: Nominalism +TARGET DECK: Obsidian::H&SS +FILE TAGS: ontology::nominalism +tags: + - nominalism + - ontology +--- + +## Overview + +**Anti-realists** about a category are those who don't believe entities of said category exist. **Realists** about a category are those that do. **Nominalism** refers to the stance that no abstract objects exist. That is, nominalists are anti-realists in regards to abstract entities. + +%%ANKI +Basic +What does it mean for a person to be anti-realist about category $X$? +Back: They do not believe entities of $X$ exist. +Reference: Nikk Effingham, _An Introduction to Ontology_ (Cambridge: Polity Press, 2013). + +END%% + +%%ANKI +Basic +What does it mean for a person to be realist about category $X$? +Back: They believe entities belonging to $X$ exist. +Reference: Nikk Effingham, _An Introduction to Ontology_ (Cambridge: Polity Press, 2013). + +END%% + +%%ANKI +Basic +How does Effingham define nominalism? +Back: As anti-realism towards abstracta. +Reference: Nikk Effingham, _An Introduction to Ontology_ (Cambridge: Polity Press, 2013). + +END%% + +%%ANKI +Cloze +Roughly speaking, {1:permissivism} is to {2:realism} whereas {2:nominalism} is to {1:anti-realism}. +Reference: Nikk Effingham, _An Introduction to Ontology_ (Cambridge: Polity Press, 2013). + +END%% + +## Bibliography + +* Nikk Effingham, _An Introduction to Ontology_ (Cambridge: Polity Press, 2013). \ No newline at end of file diff --git a/notes/set/functions.md b/notes/set/functions.md index 9fb4bd5..97a76c5 100644 --- a/notes/set/functions.md +++ b/notes/set/functions.md @@ -1327,7 +1327,7 @@ END%% %%ANKI Basic -Consider sets $A$ and $B$. How is $A \cap B$ be rewritten as a function under some image? +Consider sets $A$ and $B$. How is $A \cap B$ rewritten as a function under some image? Back: $I_A[\![B]\!]$ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). @@ -1634,7 +1634,174 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre END%% +## Kernels + +Let $F \colon A \rightarrow B$. Define [[relations#Equivalence Relations|equivalence relation]] $\sim$ as $$x \sim y \Leftrightarrow f(x) = f(y)$$ +Relation $\sim$ is called the **(equivalence) kernel** of $f$. The [[relations#Partitions|partition]] induced by $\sim$ on $A$ is called the **coimage** of $f$ (denoted $\mathop{\text{coim}}f$). The **fiber** of an element $y$ under $F$ is $F^{-1}[\![\{y\}]\!]$, i.e. the preimage of singleton set $\{y\}$. Therefore the equivalence classes of $\sim$ are also known as the fibers of $f$. + +%%ANKI +Basic +What kind of mathematical object is the kernel of $F \colon A \rightarrow B$? +Back: An equivalence relation. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +How is the kernel of $F \colon A \rightarrow B$ defined? +Back: As equivalence relation $\sim$ such that $x \sim y \Leftrightarrow F(x) = F(y)$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $F \colon A \rightarrow B$. What name does the following relation $\sim$ go by? $$x \sim y \Leftrightarrow F(x) = F(y)$$ +Back: The kernel of $F$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $F \colon A \rightarrow B$. The partition induced by the kernel of $F$ is a partition of what set? +Back: $A$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $F \colon A \rightarrow B$. What does $\mathop{\text{coim}}F$ refer to? +Back: The coimage of $F$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +How is the coimage of function $F \colon A \rightarrow B$ defined? +Back: As $A / {\sim}$ where $x \sim y \Leftrightarrow F(x) = F(y)$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $F \colon A \rightarrow B$. What specific name does a member of $\mathop{\text{coim}}F$ go by? +Back: A fiber. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $F \colon A \rightarrow B$. How is the fiber of $y$ under $F$ defined? +Back: As set $F^{-1}[\![\{y\}]\!]$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $F \colon A \rightarrow B$. The fibers of $F$ make up what set? +Back: $\mathop{\text{coim}}F$ +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $F \colon A \rightarrow B$. How is $\mathop{\text{coim}}F$ denoted as a quotient set? +Back: As $A / {\sim}$ where $x \sim y \Leftrightarrow F(x) = F(y)$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $F \colon A \rightarrow B$ and $\sim$ be the kernel of $F$. How does $F$ factor into $\hat{F} \colon A / {\sim} \rightarrow B$? +Back: $F = \hat{F} \circ \phi$ where $\phi$ is the natural map. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. What name does $\phi$ go by? +![[function-kernel.png]] +Back: The natural map (with respect to $\sim$). +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. How is $\phi$ defined? +![[function-kernel.png]] +Back: $\phi(x) = [x]_{\sim}$ +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. What name does $\sim$ go by? +![[function-kernel.png]] +Back: $\mathop{\text{coim}} F$ +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. What name do the members of $A / {\sim}$ go by? +![[function-kernel.png]] +Back: The fibers of $F$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. What composition is $F$ equal to? +![[function-kernel.png]] +Back: $F = \hat{F} \circ \phi$ +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. Is $\hat{F}$ injective? +![[function-kernel.png]] +Back: Yes. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. Is $\hat{F}$ surjective? +![[function-kernel.png]] +Back: Not necessarily. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider factoring $F \colon A \rightarrow B$ by its kernel $\sim$. Is $\hat{F}$ bijective? +![[function-kernel.png]] +Back: Not necessarily. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + ## Bibliography * “Bijection, Injection and Surjection,” in _Wikipedia_, May 2, 2024, [https://en.wikipedia.org/w/index.php?title=Bijection_injection_and_surjection](https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1221800163). -* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). \ No newline at end of file +* “Fiber (Mathematics),” in _Wikipedia_, April 10, 2024, [https://en.wikipedia.org/w/index.php?title=Fiber_(mathematics)&oldid=1218193490](https://en.wikipedia.org/w/index.php?title=Fiber_(mathematics)&oldid=1218193490). +* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). +* “Kernel (Set Theory),” in _Wikipedia_, May 22, 2024, [https://en.wikipedia.org/w/index.php?title=Kernel_(set_theory)&oldid=1225189560](https://en.wikipedia.org/w/index.php?title=Kernel_(set_theory)&oldid=1225189560). \ No newline at end of file diff --git a/notes/set/images/function-kernel.png b/notes/set/images/function-kernel.png new file mode 100644 index 0000000..b23d4ee Binary files /dev/null and b/notes/set/images/function-kernel.png differ diff --git a/notes/set/relations.md b/notes/set/relations.md index 3e89453..f44c55a 100644 --- a/notes/set/relations.md +++ b/notes/set/relations.md @@ -803,6 +803,331 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre END%% +The set $[x]_R$ is defined by $[x]_R = \{t \mid xRt\}$. If $R$ is an equivalence relation and $x \in \mathop{\text{fld}}R$, then $[x]_R$ is called the **equivalence class of $x$ (modulo $R$)**. If the relation $R$ is fixed by the context, we may write just $[x]$. + +%%ANKI +Basic +How is set $[x]_R$ defined? +Back: As $\{t \mid xRt\}$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +What is an equivalence class? +Back: A set of members mutually related w.r.t an equivalence relation. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +What kind of mathematical object is $x$ in $[x]_R$? +Back: A set (or urelement). +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +What kind of mathematical object is $R$ in $[x]_R$? +Back: A relation. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +What compact notation is used to denote $\{t \mid xRt\}$? +Back: $[x]_R$ +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Cloze +If {1:$R$ is an equivalence relation} and {1:$x \in \mathop{\text{fld} }R$}, then $[x]_R$ is called the {2:equivalence class of $x$} (modulo {2:$R$}). +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $x$? +Back: A set (or urelement). +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $R$? +Back: A relation. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider an equivalence class of $x$ (modulo $R$). What condition does $x$ necessarily satisfy? +Back: $x \in \mathop{\text{fld}}R$ +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider an equivalence class of $x$ (modulo $R$). What condition does $R$ necessarily satisfy? +Back: $R$ is an equivalence relation. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Cloze +Assume $R$ is an equivalence relation on $A$ and that $x, y \in A$. Then {1:$[x]_R$} $=$ {1:$[y]_R$} iff {2:$xRy$}. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +## Partitions + +A **partition** $\Pi$ of a set $A$ is a set of nonempty subsets of $A$ that is disjoint and exhaustive. + +%%ANKI +Basic +What kind of mathematical object is a partition of a set? +Back: A set. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +What is a partition of a set $A$? +Back: A set of nonempty subsets of $A$ that is disjoint and exhaustive. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $\Pi$ be a partition of a set $A$. When does $\Pi = \varnothing$? +Back: If and only if $A = \varnothing$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $\Pi$ be a partition of set $A$. What property must each *individual* member of $\Pi$ exhibit? +Back: Each member is nonempty. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $\Pi$ be a partition of set $A$. What property must each *pair* of members of $\Pi$ exhibit? +Back: Each pair must be disjoint. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $\Pi$ be a partition of set $A$. Which property do all the members of $\Pi$ exhibit together? +Back: The members of $\Pi$ must be exhaustive. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +What does it mean for a partition $\Pi$ of $A$ to be exhaustive? +Back: Every member of $A$ must appear in one of the members of $\Pi$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Is $A$ a partition of set $A$? +Back: No. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Is $\{A\}$ a partition of set $A$? +Back: Yes. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1, 2\}, \{2, 3, 4\}\}$ a partition of $A$? +Back: Each pair of members of a partition of $A$ must be disjoint. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1\}, \{2\}, \{3\}\}$ a partition of $A$? +Back: The members of a partition of $A$ must be exhaustive. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Let $A = \{1, 2, 3, 4\}$. Why isn't $\{\{1, 2, 3\}, \{4\}\}$ a partition of $A$? +Back: N/A. It is. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +Assume $\Pi$ is a partition of set $A$. Then the relation $R$ is an equivalence relation: $$xRy \Leftrightarrow (\exists B \in \Pi, x \in B \land y \in B)$$ + +%%ANKI +Basic +Let $\Pi$ be a partition of $A$. What equivalence relation $R$ is induced? +Back: $R$ such that $xRy \Leftrightarrow (\exists B \in \Pi, x \in B \land y \in B)$ +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +## Quotient Sets + +If $R$ is an equivalence relation on $A$, then the **quotient set** "$A$ modulo $R$" is defined as $$A / R = \{[x]_R \mid x \in A\}.$$ + +The **natural map** (or **canonical map**) $\phi : A \rightarrow A / R$ is given by $$\phi(x) = [x]_R.$$ + +Note that $A / R$, the set of all equivalence classes, is a partition of $A$. + +%%ANKI +Basic +Let $R$ be an equivalence relation on $A$. What partition is induced? +Back: $A / R = \{[x]_R \mid x \in A\}$ +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Members of $A / R$ are called what? +Back: Equivalence classes. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +$A / R$ is a partition of what set? +Back: $A$ +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +How is quotient set $A / R$ pronounced? +Back: As "$A$ modulo $R$". +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider quotient set $A / R$. What kind of mathematical object is $A$? +Back: A set. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider quotient set $A / R$. What kind of mathematical object is $R$? +Back: An equivalence relation on $A$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +How is quotient set $A / R$ defined? +Back: As set $\{[x]_R \mid x \in A\}$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Given quotient set $A / R$, what is the domain of its natural map? +Back: $A$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Given quotient set $A / R$, what is the codomain of its natural map? +Back: $A / R$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider quotient set $A / R$. How is the natural map $\phi$ defined? +Back: $\phi \colon A \rightarrow A / R$ given by $\phi(x) = [x]_R$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Given quotient set $A / R$, what is the domain of its canonical map? +Back: $A$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Given quotient set $A / R$, what is the codomain of its canonical map? +Back: $A / R$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider quotient set $A / R$. How is the canonical map $\phi$ defined? +Back: $\phi \colon A \rightarrow A / R$ given by $\phi(x) = [x]_R$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Basic +Consider set $\omega$ and equivalence relation $\sim$. How is the relevant quotient set denoted? +Back: As $\omega / {\sim}$. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + +%%ANKI +Cloze +Let $R$ be an equivalence relation on $A$ and $x \in A$. Then {1:$x$ (modulo $R$)} is an {2:equivalence class} whereas {2:$A$ modulo $R$} is a {1:quotient set}. +Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). + +END%% + ## Bibliography * “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).