An ordered pair of $x$ and $y$, denoted $\langle x, y \rangle$, is defined as: $\langle x, y \rangle = \{\{x\}, \{x, y\}\}$. We define the **first coordinate** of $\langle x, y \rangle$ to be $x$ and the **second coordinate** to be $y$.
%%ANKI
Basic
How is an ordered pair of $x$ and $y$ denoted?
Back: $\langle x, y \rangle$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753102-->
END%%
%%ANKI
Basic
What property must any satisfactory definition of $\langle x, y \rangle$ satisfy?
Back: $x$ and $y$, along with their order, are uniquely determined.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717679524930-->
END%%
%%ANKI
Basic
Which of ordered pairs or sets is more general?
Back: Sets.
<!--ID: 1717678753108-->
END%%
%%ANKI
Basic
What biconditional is used to prove the well-definedness of $\langle x, y \rangle$?
Back: $(\langle x, y \rangle = \langle u, v \rangle) \Leftrightarrow (x = u \land y = v)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717678753111-->
END%%
%%ANKI
Cloze
{$\{1, 2\}$} is a set whereas {$\langle 1, 2 \rangle$} is an ordered pair.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
Reference: “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).
A **relation** $R$ is a set of ordered pairs. The **domain** of $R$ ($\mathop{\text{dom}}{R}$), the **range** of $R$ ($\mathop{\text{ran}}{R}$), and the **field** of $R$ ($\mathop{\text{fld}}{R}$) is defined as:
* $x \in \mathop{\text{dom}}{R} \Leftrightarrow \exists y, \langle x, y \rangle \in R$
Let $A$ be a set containing no ordered pairs. What is $\mathop{\text{dom}} A$?
Back: $\varnothing$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739893-->
END%%
%%ANKI
Basic
Let $A = \{\{\{x\}, \{x, y\}\}, \{z\}\}$. What is $\mathop{\text{dom}} A$?
Back: $\{x\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739898-->
END%%
%%ANKI
Cloze
For any set $\mathscr{A}$, $\mathop{\text{dom}}\bigcup\mathscr{A}$ {$=$} $\bigcup\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739901-->
END%%
%%ANKI
Basic
The following is analagous to what predicate logical expression of commuting quantifiers?$$\mathop{\text{dom}}\bigcup\mathscr{A} = \bigcup\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$$
Back: $\exists x, \exists y, P(x, y) \Leftrightarrow \exists y, \exists x, P(x, y)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739907-->
END%%
%%ANKI
Cloze
For any set $\mathscr{A}$, $\mathop{\text{dom}}\bigcap\mathscr{A}$ {$\subseteq$} $\bigcap\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739910-->
END%%
%%ANKI
Basic
The following is analagous to what predicate logical expression of commuting quantifiers? $$\mathop{\text{dom}}\bigcap\mathscr{A} \subseteq \bigcap\, \{\mathop{\text{dom}} R \mid R \in \mathscr{A}\}$$
Back: $\exists x, \forall y, P(x, y) \Rightarrow \forall y, \exists x, P(x, y)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739914-->
END%%
%%ANKI
Cloze
For any set $\mathscr{A}$, $\mathop{\text{ran}}\bigcup\mathscr{A}$ {$=$} $\bigcup\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739918-->
END%%
%%ANKI
Basic
The following is analagous to what predicate logical expression of commuting quantifiers? $$\mathop{\text{ran}}\bigcup\mathscr{A} = \bigcup\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$$
Back: $\exists x, \exists y, P(x, y) \Leftrightarrow \exists y, \exists x, P(x, y)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739922-->
END%%
%%ANKI
Cloze
For any set $\mathscr{A}$, $\mathop{\text{ran}}\bigcap\mathscr{A}$ {$\subseteq$} $\bigcap\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739926-->
END%%
%%ANKI
Basic
The following is analagous to what predicate logical expression of commuting quantifiers? $$\mathop{\text{ran}}\bigcap\mathscr{A} \subseteq \bigcap\, \{\mathop{\text{ran}} R \mid R \in \mathscr{A}\}$$
Back: $\exists x, \forall y, P(x, y) \Rightarrow \forall y, \exists x, P(x, y)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
A set $A$ is **single-valued** iff for each $x$ in $\mathop{\text{dom}}A$, there is only one $y$ such that $xAy$. A set $A$ is **single-rooted** iff for each $y \in \mathop{\text{ran}}A$, there is only one $x$ such that $xAy$.
%%ANKI
Basic
What does it mean for a set $A$ to be "single-valued"?
Back: For each $x \in \mathop{\text{dom}}A$, there exists a unique $y$ such that $xAy$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718427443355-->
END%%
%%ANKI
Basic
What does it mean for a set $A$ to be "single-rooted"?
Back: For each $y \in \mathop{\text{ran}}A$, there exists a unique $x$ such that $xRy$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
We define ordered triples as $\langle x, y, z \rangle = \langle \langle x, y \rangle, z \rangle$. We define ordered quadruples as $\langle x_1, x_2, x_3, x_4 \rangle = \langle \langle \langle x_1, x_2 \rangle, x_3 \rangle, x_4 \rangle$. This idea generalizes to $n$-tuples. As a special case, we define the $1$-tuple $\langle x \rangle = x$.
An **$n$-ary relation on $A$** is a set of ordered $n$-tuples with all **components** in $A$. Keep in mind though, a unary ($1$-ary) relation on $A$ is just a subset of $A$ and may not be a relation at all.
%%ANKI
Basic
Ordered triple $\langle x, y, z \rangle$ is "syntactic sugar" for what?
Back: $\langle \langle x, y \rangle, z \rangle$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718329620058-->
END%%
%%ANKI
Basic
Ordered quadruple $\langle x_1, x_2, x_3, x_4 \rangle$ is "syntactic sugar" for what?
* “Cartesian Product,” in _Wikipedia_, April 17, 2024, [https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305](https://en.wikipedia.org/w/index.php?title=Cartesian_product&oldid=1219343305).