notebook/notes/trigonometry/index.md

429 lines
12 KiB
Markdown
Raw Permalink Normal View History

2025-01-20 04:11:02 +00:00
---
title: Trigonometry
TARGET DECK: Obsidian::STEM
FILE TAGS: trigonometry
tags:
- trigonometry
---
## Overview
2025-01-20 05:13:56 +00:00
Trigonometry was originally derived from a Greek word meaning "triangle measuring". It has since been generalized to refer to the study of periodicity.
2025-01-20 04:11:02 +00:00
%%ANKI
Basic
Trigonometry was originally the study of what geometric shape?
Back: Triangles.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737167693405-->
END%%
## Functions
2025-01-20 05:13:56 +00:00
%%ANKI
Basic
What are the two most fundamental trigonometric functions?
Back: $\sin$ and $\cos$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513249-->
END%%
2025-01-20 04:11:02 +00:00
2025-01-20 05:13:56 +00:00
%%ANKI
Cloze
The {1:$x$}-coordinate is to {2:$\cos$} whereas the {2:$y$}-coordinate is to {1:$\sin$}.
2025-01-20 05:13:56 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513254-->
2025-01-20 05:13:56 +00:00
END%%
%%ANKI
Basic
Suppose an arc on the unit circle has terminal point $\langle \cos(t), \sin(t) \rangle$. What was its initial point?
Back: $\langle 1, 0 \rangle$
2025-01-20 05:13:56 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513255-->
2025-01-20 05:13:56 +00:00
END%%
2025-01-20 04:11:02 +00:00
%%ANKI
Basic
Consider the following arc with length $t$ on the unit circle. With maximum specificity, what is its terminal point?
![[example-arc.png]]
Back: $\langle \cos(t), \sin(t) \rangle$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513262-->
END%%
%%ANKI
Basic
Why are $\sin$ and $\cos$ called circular functions?
Back: Their values are determined by coordinates of points on the unit circle.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971452-->
END%%
### Sine
If the real number $t$ is the directed length of an arc (either positive or negative) measured on the [[unit-circle|unit circle]] $x^2 + y^2 = 1$ (with counterclockwise as the positive direction) with initial point $\langle 1, 0 \rangle$ and terminal point $\langle x, y \rangle$, then the **sine** of $t$, denoted $\sin(t)$ is defined to be $$\sin(t) = y.$$
%%ANKI
Cloze
The {sine} of $t$ is denoted as {$\sin(t)$}.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513250-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
2025-01-20 05:13:56 +00:00
Map $[0, t]$ to the unit circle. Geometrically, what does $\sin(t)$ correspond to?
Back: The $y$-coordinate of the arc's terminal point.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513253-->
END%%
%%ANKI
Basic
What geometric aspect of the unit circle corresponds to the input of sine?
Back: Arc length.
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513259-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
What geometric aspect of the unit circle corresponds to the output of the sine function?
Back: The $y$-coordinate of an arc's terminal point.
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513261-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
Consider the following arc with length $t$ on the unit circle. What is the terminal point's $y$-coordinate?
![[example-arc.png]]
Back: $\sin(t)$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513256-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
What does $\sin(2\pi)$ evaluate to?
Back: $0$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971447-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
What does $\sin\left(\frac{\pi}{2}\right)$ evaluate to?
Back: $1$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971449-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
What does $\sin\left(-\frac{\pi}{2}\right)$ evaluate to?
Back: $-1$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971450-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
What does $\sin\left(\pi\right)$ evaluate to?
Back: $0$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971451-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
What is the domain of $\sin$?
Back: $\mathbb{R}$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971455-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
What is the range of $\sin$?
Back: $[-1, 1]$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971456-->
END%%
%%ANKI
Basic
Let $t$ be the length of an arc with initial point $\langle 1, 0 \rangle$ and terminal point in quadrant I. What is the sign of $\sin(t)$?
Back: $\sin(t) > 0$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737416715565-->
END%%
%%ANKI
Basic
Let $t$ be the length of an arc with initial point $\langle 1, 0 \rangle$ and terminal point in quadrant II. What is the sign of $\sin(t)$?
Back: $\sin(t) > 0$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737416715568-->
END%%
%%ANKI
Basic
Let $t$ be the length of an arc with initial point $\langle 1, 0 \rangle$ and terminal point in quadrant III. What is the sign of $\sin(t)$?
Back: $\sin(t) < 0$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737416715575-->
END%%
%%ANKI
Basic
Let $t$ be the length of an arc with initial point $\langle 1, 0 \rangle$ and terminal point in quadrant IV. What is the sign of $\sin(t)$?
Back: $\sin(t) < 0$
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737416715578-->
END%%
%%ANKI
Basic
Let $t$ be the length of an arc with initial point $\langle 1, 0 \rangle$. When is $\sin(t) > 0$?
Back: When the terminal point of the arc is in quadrant I or II.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737416715588-->
END%%
%%ANKI
Basic
Let $t$ be the length of an arc with initial point $\langle 1, 0 \rangle$. When is $\sin(t) < 0$?
Back: When the terminal point of the arc is in quadrant III or IV.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737416715591-->
END%%
%%ANKI
Basic
Let $\frac{\pi}{2} < t < \pi$. What is the sign of $\sin(t)$?
Back: Positive.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737417172718-->
END%%
%%ANKI
Basic
Let $\frac{3\pi}{2} < t < 2\pi$. What is the sign of $\sin(t)$?
Back: Negative.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737417172722-->
END%%
%%ANKI
Cloze
For any real number $t$, {$\sin^2(t)$} is alternatively denoted as {$(\sin(t))^2$}.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737418825316-->
END%%
### Cosine
If the real number $t$ is the directed length of an arc (either positive or negative) measured on the [[unit-circle|unit circle]] $x^2 + y^2 = 1$ (with counterclockwise as the positive direction) with initial point $\langle 1, 0 \rangle$ and terminal point $\langle x, y \rangle$, then the **cosine** of $t$, denoted $\cos(t)$, is defined to be $$\cos(t) = x.$$
%%ANKI
Cloze
The {cosine} of $t$ is denoted as {$\cos(t)$}.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513251-->
END%%
%%ANKI
Basic
Map $[0, t]$ to the unit circle. Geometrically, what does $\cos(t)$ correspond to?
Back: The $x$-coordinate of the arc's terminal point.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513252-->
END%%
%%ANKI
Basic
What geometric aspect of the unit circle corresponds to the input of the cosine function?
Back: Arc length.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513257-->
END%%
%%ANKI
Basic
What geometric aspect of the unit circle corresponds to the output of the cosine function?
Back: The $x$-coordinate of an arc's terminal point.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513258-->
END%%
%%ANKI
Basic
Consider the following arc with length $t$ on the unit circle. What is the terminal point's $x$-coordinate?
2025-01-20 05:13:56 +00:00
![[example-arc.png]]
Back: $\cos(t)$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349513260-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
2025-01-20 05:13:56 +00:00
What does $\cos(0)$ evaluate to?
Back: $1$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
2025-01-20 05:13:56 +00:00
<!--ID: 1737349971441-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
2025-01-20 05:13:56 +00:00
What does $\cos\left(\frac{\pi}{2}\right)$ evaluate to?
Back: $0$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
2025-01-20 05:13:56 +00:00
<!--ID: 1737349971443-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
2025-01-20 05:13:56 +00:00
What does $\cos\left(-\frac{\pi}{2}\right)$ evaluate to?
Back: $0$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
2025-01-20 05:13:56 +00:00
<!--ID: 1737349971445-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
2025-01-20 05:13:56 +00:00
What does $\cos\left(\pi\right)$ evaluate to?
Back: $-1$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
2025-01-20 05:13:56 +00:00
<!--ID: 1737349971446-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
What is the domain of $\cos$?
Back: $\mathbb{R}$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971453-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
What is the range of $\cos$?
Back: $[-1, 1]$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737349971454-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
Let $t$ be the length of an arc with initial point $\langle 1, 0 \rangle$ and terminal point in quadrant I. What is the sign of $\cos(t)$?
Back: $\cos(t) > 0$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737416715551-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
Let $t$ be the length of an arc with initial point $\langle 1, 0 \rangle$ and terminal point in quadrant II. What is the sign of $\cos(t)$?
Back: $\cos(t) < 0$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737416715557-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
Let $t$ be the length of an arc with initial point $\langle 1, 0 \rangle$ and terminal point in quadrant III. What is the sign of $\cos(t)$?
Back: $\cos(t) < 0$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737416715560-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
Let $t$ be the length of an arc with initial point $\langle 1, 0 \rangle$ and terminal point in quadrant IV. What is the sign of $\cos(t)$?
Back: $\cos(t) < 0$
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737416715562-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
Let $t$ be the length of an arc with initial point $\langle 1, 0 \rangle$. When is $\cos(t) > 0$?
Back: When the terminal point of the arc is in quadrant I or IV.
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737416715582-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
Let $t$ be the length of an arc with initial point $\langle 1, 0 \rangle$. When is $\cos(t) < 0$?
Back: When the terminal point of the arc is in quadrant II or III.
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737416715585-->
2025-01-20 04:11:02 +00:00
END%%
%%ANKI
Basic
Let $\frac{\pi}{2} < t < \pi$. What is the sign of $\cos(t)$?
Back: Negative.
2025-01-20 04:11:02 +00:00
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737417172726-->
END%%
%%ANKI
Basic
Let $\frac{3\pi}{2} < t < 2\pi$. What is the sign of $\cos(t)$?
Back: Positive.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737417172730-->
END%%
%%ANKI
Cloze
For any real number $t$, {$\cos^2(t)$} is alternatively denoted as {$(\cos(t))^2$}.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737418825321-->
END%%
## Identities
### Pythagorean Identity
For any real number $t$, $$\cos^2(t) + \sin^2(t) = 1.$$
%%ANKI
Basic
Which trigonometric identity is often considered the most important?
Back: The Pythagorean Identity.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737418825324-->
END%%
%%ANKI
Basic
What does the Pytagorean Identity state?
Back: For any real number $t$, $\cos^2(t) + \sin^2(t) = 1$.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737418825326-->
END%%
%%ANKI
Basic
What shape is used to derive the Pythagorean Identity?
Back: The unit circle.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737418825329-->
END%%
%%ANKI
Basic
How is the Pythagorean Identity derived?
Back: By applying the Pythagorean Theorem on point $\langle \cos(t), \sin(t) \rangle$ on the unit circle.
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
<!--ID: 1737418825332-->
2025-01-20 04:11:02 +00:00
END%%
## Bibliography
* Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.