215 lines
5.7 KiB
Markdown
215 lines
5.7 KiB
Markdown
|
---
|
||
|
title: Trigonometry
|
||
|
TARGET DECK: Obsidian::STEM
|
||
|
FILE TAGS: trigonometry
|
||
|
tags:
|
||
|
- trigonometry
|
||
|
---
|
||
|
|
||
|
## Overview
|
||
|
|
||
|
Trigonometry was originally derived from a Greek word meaning "triangle measuring". It has generalized to studying periodicity.
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Trigonometry was originally the study of what geometric shape?
|
||
|
Back: Triangles.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737167693405-->
|
||
|
END%%
|
||
|
|
||
|
## Unit Circle
|
||
|
|
||
|
On the [[cartesian|Cartesian coordinate system]], the **unit circle** is the [[circle]] with center at the origin and radius $1$.
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
On the Cartesian coordinate system, what is the unit circle?
|
||
|
Back: The circle with center at the origin and radius $1$.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737167693410-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
On the Cartesian coordinate system, where is the center of the unit circle located?
|
||
|
Back: At $\langle 0, 0 \rangle$, i.e. the origin.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737167693413-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
What is the radius of the unit circle?
|
||
|
Back: $1$
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737167693416-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
What is the diameter of the unit circle?
|
||
|
Back: $2$
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737167693419-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
What is the circumference of the unit circle?
|
||
|
Back: $2\pi$
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737167693428-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
What is the area of the unit circle?
|
||
|
Back: $\pi$
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737167693435-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which real numbers does the point $\langle 0, 0 \rangle$ on the unit circle map to?
|
||
|
Back: N/A. This point is not on the circle itself.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737168795237-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which real numbers does the point $\langle 1, 0 \rangle$ on the unit circle map to?
|
||
|
Back: $2\pi k$ for all $k \in \mathbb{Z}$.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737168795241-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which point on the unit circle does number $2\pi$ map to?
|
||
|
Back: $\langle 1, 0 \rangle$
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737168795265-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which point on the unit circle does number $\frac{3\pi}{2}$ map to?
|
||
|
Back: $\langle 0, -1 \rangle$
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737168795244-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which real numbers does the point $\langle 0, -1 \rangle$ on the unit circle map to?
|
||
|
Back:$\frac{3\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737168795269-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which real numbers does the point $\langle 0, 1 \rangle$ on the unit circle map to?
|
||
|
Back: $\frac{\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737168795248-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which point on the unit circle does number $\frac{\pi}{2}$ map to?
|
||
|
Back: $\langle 0, 1 \rangle$
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737168795261-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which point on the unit circle does number $\pi$ map to?
|
||
|
Back: $\langle -1, 0 \rangle$
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737168795252-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which real numbers does the point $\langle -1, 0 \rangle$ on the unit circle map to?
|
||
|
Back: $\pi + 2\pi k$ for all $k \in \mathbb{Z}$.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737168795256-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which real numbers correspond to the highlighted point on the unit circle?
|
||
|
![[unit-circle-1-0.png]]
|
||
|
Back: $2 \pi k$ for all $k \in \mathbb{Z}$.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737169243685-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which real numbers correspond to the highlighted point on the unit circle?
|
||
|
![[unit-circle-0-1.png]]
|
||
|
Back: $\frac{\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737169243690-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which real numbers correspond to the highlighted point on the unit circle?
|
||
|
![[unit-circle-n1-0.png]]
|
||
|
Back: $\pi + 2\pi k$ for all $k \in \mathbb{Z}$.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737169243692-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
Which real numbers correspond to the highlighted point on the unit circle?
|
||
|
![[unit-circle-0-n1.png]]
|
||
|
Back: $\frac{3\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737169243695-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
*Why* does point $\langle 1, 0 \rangle$ on the unit circle coincide with real number $2\pi$?
|
||
|
Back: Because the circumference of the unit circle is $2\pi$.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737169683142-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
*Why* does point $\langle -1, 0 \rangle$ on the unit circle coincide with real number $\pi$?
|
||
|
Back: Because half the circumference of the unit circle is $\pi$.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737169683151-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
What is the "periodicity" of the unit circle?
|
||
|
Back: $2 \pi$
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737230158153-->
|
||
|
END%%
|
||
|
|
||
|
%%ANKI
|
||
|
Basic
|
||
|
What property of the unit circle does its periodicity correspond to?
|
||
|
Back: Its circumference.
|
||
|
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||
|
<!--ID: 1737230158163-->
|
||
|
END%%
|
||
|
|
||
|
## Bibliography
|
||
|
|
||
|
* Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|