Trigonometry and relocation entries.
|
@ -235,7 +235,29 @@
|
|||
"dfs-edge-classification.png",
|
||||
"complex-plane-point.png",
|
||||
"nfa-example.png",
|
||||
"topological-sort.png"
|
||||
"topological-sort.png",
|
||||
"unit-circle.png",
|
||||
"circle-right.png",
|
||||
"circle-left-down.png",
|
||||
"abs-right.png",
|
||||
"abs-left.png",
|
||||
"abs-up.png",
|
||||
"abs-down.png",
|
||||
"abs-right-down.png",
|
||||
"abs-left-down.png",
|
||||
"circle-left-up.png",
|
||||
"unit-circle-1-0.png",
|
||||
"unit-circle-0-1.png",
|
||||
"unit-circle-n1-0.png",
|
||||
"unit-circle-0-n1.png",
|
||||
"iterative-command.png",
|
||||
"function-bijective.png",
|
||||
"function-injective.png",
|
||||
"function-surjective.png",
|
||||
"function-general.png",
|
||||
"function-kernel.png",
|
||||
"triangular-gnomon.png",
|
||||
"pascals-triangle.png"
|
||||
],
|
||||
"File Hashes": {
|
||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||
|
@ -342,7 +364,7 @@
|
|||
"combinatorics/inclusion-exclusion.md": "c27b49ee03cc5ee854d0e8bd12a1d505",
|
||||
"_journal/2024-02-21.md": "b9d944ecebe625da5dd72aeea6a916a2",
|
||||
"_journal/2024-02/2024-02-20.md": "af2ef10727726200c4defe2eafc7d841",
|
||||
"algebra/radices.md": "474178afb07f3d5037c1547cc1a132f2",
|
||||
"algebra/radices.md": "01fbaba8f81929581707d8df5ad0d912",
|
||||
"_journal/2024-02-22.md": "e01f1d4bd2f7ac2a667cdfd500885a2a",
|
||||
"_journal/2024-02/2024-02-21.md": "f423137ae550eb958378750d1f5e98c7",
|
||||
"_journal/2024-02-23.md": "219ce9ad15a8733edd476c97628b71fd",
|
||||
|
@ -375,7 +397,7 @@
|
|||
"algebra/sequences/index.md": "7368b87313ea161a2655be0c39e705a3",
|
||||
"_journal/2024-03-02.md": "08c3cae1df0079293b47e1e9556f1ce1",
|
||||
"_journal/2024-03/2024-03-01.md": "70da812300f284df72718dd32fc39322",
|
||||
"algebra/sequences/triangular-numbers.md": "aafaf54e5aff9ca3c7354591fce9f833",
|
||||
"algebra/sequences/triangular-numbers.md": "12c81fa4d79d67c4853efcbc7b26f4c8",
|
||||
"algebra/sequences/square-numbers.md": "171f7c5a8dac088afba40923ab86c68e",
|
||||
"_journal/2024-03-03.md": "c4977a3778ed227b768c3f9ad5512670",
|
||||
"_journal/2024-03/2024-03-02.md": "8136792b0ee6e08232e4f60c88d461d2",
|
||||
|
@ -538,7 +560,7 @@
|
|||
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
||||
"git/remotes.md": "6fbbc95efa421c720e40500e5d133639",
|
||||
"programming/pred-trans.md": "5b271eebe32e33108d7a36ad98600148",
|
||||
"programming/pred-trans.md": "007ac23931f767c84c5979ec83e28989",
|
||||
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
||||
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||
"_journal/2024-05/2024-05-13.md": "d549dd75fb42b4280d4914781edb0113",
|
||||
|
@ -607,7 +629,7 @@
|
|||
"_journal/2024-06-08.md": "b20d39dab30b4e12559a831ab8d2f9b8",
|
||||
"_journal/2024-06/2024-06-07.md": "c6bfc4c1e5913d23ea7828a23340e7d3",
|
||||
"lambda-calculus/alpha-conversion.md": "a68f3cc1565fb26335218986808a1190",
|
||||
"lambda-calculus/index.md": "14bf297d4314414723c11a11211b35b5",
|
||||
"lambda-calculus/index.md": "d68f65313a62110c5afa668b282149f3",
|
||||
"x86-64/instructions/condition-codes.md": "9c05ed99f5c96162e25f0ec4db55c656",
|
||||
"x86-64/instructions/logical.md": "a15c7da43cb97badef8ba4f8aadf9cbb",
|
||||
"x86-64/instructions/arithmetic.md": "e2c4c9caa51e089e313d6c9d3c3c0a12",
|
||||
|
@ -627,7 +649,7 @@
|
|||
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
||||
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
||||
"set/functions.md": "bd4fbd92ac87631ba26637ac812b218b",
|
||||
"set/functions.md": "a8f7fd819c27cdde6202da30787ea44c",
|
||||
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
||||
"_journal/2024-06/2024-06-14.md": "8bbe0e1ca371756b91eec66af73911ce",
|
||||
"lambda-calculus/beta-reduction.md": "0935987f2bac0e6298735f2b26fd5885",
|
||||
|
@ -912,7 +934,7 @@
|
|||
"_journal/2024-10/2024-10-16.md": "cd778e1be2737462d885ae038c7b9744",
|
||||
"_journal/2024-10/2024-10-15.md": "c21679bd2c3b29f5a86d56a1fd23b18f",
|
||||
"_journal/2024-10-22.md": "4af65962007cfecdb2c679b44b56d25f",
|
||||
"algorithms/dfs.md": "12a95fbc2fafaf87ee648c480ee041c3",
|
||||
"algorithms/dfs.md": "aa499369c42a85c21861954b389a5819",
|
||||
"_journal/2024-10/2024-10-21.md": "de1a0861e87df29aeff11a291f8fbd45",
|
||||
"_journal/2024-10-23.md": "51b2ca6edf23b6a64fd7d3638a0b54cb",
|
||||
"_journal/2024-10/2024-10-22.md": "5ff4eb7eba58e77c4fb65b7162a485e6",
|
||||
|
@ -944,7 +966,7 @@
|
|||
"_journal/2024-11/2024-11-08.md": "806bbade5f8339579287687f9433334e",
|
||||
"_journal/2024-11/2024-11-07.md": "434ec3f15d7065ea740127aa8477dd17",
|
||||
"x86-64/directives.md": "019c1c1d04efb26c3e8758aac4543cc7",
|
||||
"geometry/cartesian.md": "102453159fdb8525118d3995a132c997",
|
||||
"geometry/cartesian.md": "68281a73f3949db43ad6a54e3e8c5cc2",
|
||||
"geometry/index.md": "cac68c1b624dbb0552e56cce47bcc21d",
|
||||
"_journal/2024-11-10.md": "5478337fd2017b99d0b359713a511e66",
|
||||
"_journal/2024-11/2024-11-09.md": "46f3a640223ef533f4523837b67b57c3",
|
||||
|
@ -1003,7 +1025,7 @@
|
|||
"_journal/2024-12-08.md": "5662897539b222db1af45dcd217f0796",
|
||||
"_journal/2024-12/2024-12-07.md": "bfb6c4db0acbacba19f03a04ec29fa5c",
|
||||
"linkers/static.md": "cc56ddfc33f605d26b954ec242abc4cf",
|
||||
"linkers/index.md": "c6c2af6aab2773054b394c624bd2ddb6",
|
||||
"linkers/index.md": "80e418eac44ad6e7d8bee799c7b11b18",
|
||||
"_journal/2024-12-09.md": "8988f0e8f0060f4b86d17e0bc4e7ff7e",
|
||||
"_journal/2024-12/2024-12-08.md": "5662897539b222db1af45dcd217f0796",
|
||||
"_journal/2024-12-10.md": "c12d380d24d7d1dc2e74a57a1b79399e",
|
||||
|
@ -1049,7 +1071,7 @@
|
|||
"_journal/2024-12/2024-12-21.md": "1c1a5791f7519c92e882957cf417b51f",
|
||||
"formal-system/language.md": "7797d33a0b0eb187d43dda46a138fb25",
|
||||
"computability/automaton.md": "1dd5048ea2a66d8090a85945593fcf68",
|
||||
"computability/index.md": "d7938428ed0b0224c1fe1e59d1fab118",
|
||||
"computability/index.md": "16ae7a270363055f7096b7dd8c09a977",
|
||||
"_journal/2024-12-23.md": "72b0964a8a5ed8ba0acf7fe10b5de279",
|
||||
"_journal/2024-12/2024-12-22.md": "75375a867efc5b3aff406c73394d4814",
|
||||
"computability/language.md": "9ee8bd16c231e71855ab1d8dae3188cb",
|
||||
|
@ -1059,13 +1081,13 @@
|
|||
"_journal/2024-12/2024-12-23.md": "72b0964a8a5ed8ba0acf7fe10b5de279",
|
||||
"_journal/2024-12-25.md": "1717d37b074df58175ec0272adc278de",
|
||||
"_journal/2024-12/2024-12-24.md": "dcd3bd8b82ca4d47a9642a46d8bece0d",
|
||||
"linkers/relocatable.md": "b6f0c13e07ed57ea73dea6b4a72560d1",
|
||||
"linkers/relocatable.md": "ac24efbabe07222a89acb2fd5135cdb3",
|
||||
"data-models/federation.md": "1d92747304186bd2833a00a488fcac48",
|
||||
"_journal/2024-12-26.md": "022aeaf68d46fd39b23aca9c577f3f41",
|
||||
"_journal/2024-12/2024-12-25.md": "1717d37b074df58175ec0272adc278de",
|
||||
"_journal/2024-12-27.md": "abc4a39a50305f3558181189eefb2058",
|
||||
"_journal/2024-12/2024-12-26.md": "59e59cad1ae568adbe8e27e98d36c59c",
|
||||
"combinators/index.md": "8e324bbcf49cca9c0c0f9bbf843cbebb",
|
||||
"combinators/index.md": "8b55b44c955da88368b0b5635909b064",
|
||||
"_journal/2024-12-28.md": "1ad3caec4ea6f597cc5156f19b274c50",
|
||||
"_journal/2024-12/2024-12-27.md": "abc4a39a50305f3558181189eefb2058",
|
||||
"_journal/2024-12-29.md": "e7808872f56a12b51165fc86a1c48e60",
|
||||
|
@ -1425,7 +1447,7 @@
|
|||
"_journal/2025-01/2025-01-06.md": "20030a4b6a1f8f4b2cb882c6d4c59f29",
|
||||
"_journal/2025-01/2025-01-05.md": "0217401ed8718d4354d856a92a19a345",
|
||||
"_journal/2025-01/2025-01-07.md": "bd5aa36eff9211a9a89cc47f1c2dbdcd",
|
||||
"data-models/rdf/rdfs.md": "f891b5385d3f41acc0c6a8ce88186419",
|
||||
"data-models/rdf/rdfs.md": "705777f026ea8bf4d8311f1c47621cd4",
|
||||
"_journal/2025-01-11.md": "a9bdad00db9432ea97df265bca1f8261",
|
||||
"_journal/2025-01/2025-01-10.md": "a7929276f89cc19193622dd1f1dd2588",
|
||||
"_journal/2025-01/2025-01-09.md": "166ff75c5ea1bf5110931fa054e1565e",
|
||||
|
@ -1440,8 +1462,14 @@
|
|||
"_journal/2025-01/2025-01-14.md": "88eb99d4319693c7f4cd2357618a19f8",
|
||||
"_journal/2025-01/2025-01-15.md": "a559a6eba2958e2664ad25c1e3236d87",
|
||||
"_journal/2025-01-16.md": "e3a21059205784a4e88bfe3b4deac7f7",
|
||||
"_journal/2025-01-17.md": "ba60278a6cca1832ad28c273b01b0745",
|
||||
"_journal/2025-01/2025-01-16.md": "e3a21059205784a4e88bfe3b4deac7f7"
|
||||
"_journal/2025-01-17.md": "08a5f05bb572db9495bfc2b4feb8e0a9",
|
||||
"_journal/2025-01/2025-01-16.md": "e3a21059205784a4e88bfe3b4deac7f7",
|
||||
"trigonometry/index.md": "6d07d5ba5e352f182a19b8a3d804321b",
|
||||
"geometry/circle.md": "751a5aada6521281f1d8edb463572943",
|
||||
"_journal/2025-01-18.md": "8655fbf94aeec13efe9b6d2087c1f37e",
|
||||
"_journal/2025-01/2025-01-17.md": "08a5f05bb572db9495bfc2b4feb8e0a9",
|
||||
"_journal/2025-01-19.md": "a37c6f534cf5e272619c5f813974afcf",
|
||||
"_journal/2025-01/2025-01-18.md": "7a1655887093f37ffe86309d90459b3b"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -1,9 +0,0 @@
|
|||
---
|
||||
title: "2025-01-17"
|
||||
---
|
||||
|
||||
- [ ] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2025-01-19"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* More notes on relocation entries.
|
|
@ -0,0 +1,13 @@
|
|||
---
|
||||
title: "2025-01-17"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Distinguish asserted and inferred RDF triples.
|
||||
* Notes on the [[circle]] and [[trigonometry/index#Unit Circle|unit circle]].
|
||||
* Formal definition of the [[pred-trans#Iterative|iterative]] command.
|
|
@ -0,0 +1,11 @@
|
|||
---
|
||||
title: "2025-01-18"
|
||||
---
|
||||
|
||||
- [x] Anki Flashcards
|
||||
- [x] KoL
|
||||
- [x] OGS
|
||||
- [ ] Sheet Music (10 min.)
|
||||
- [ ] Korean (Read 1 Story)
|
||||
|
||||
* Notes on [[relocatable#Relocation Entries|relocation entries]].
|
|
@ -202,6 +202,33 @@ Tags: binary::hex
|
|||
<!--ID: 1707432641583-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What hexadecimal value does $2^{0 + 4(0)}$ evaluate to?
|
||||
Back: `0x1`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary::hex
|
||||
<!--ID: 1737232783457-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What hexadecimal value does $2^{0 + 4(2)}$ evaluate to?
|
||||
Back: `0x100`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary::hex
|
||||
<!--ID: 1737232783462-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Write `0x10000` in form $2^{i + 4j}$. What values of $i$ and $j$ satisfy this?
|
||||
Back: $i = 0$ and $j = 4$.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary::hex
|
||||
<!--ID: 1737232783466-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the $1$ in $2^{1 + 4j}$ translated to hex?
|
||||
|
@ -211,6 +238,33 @@ Tags: binary::hex
|
|||
<!--ID: 1707432641585-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What hexadecimal value does $2^{1 + 4(2)}$ evaluate to?
|
||||
Back: `0x200`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary::hex
|
||||
<!--ID: 1737232783469-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What hexadecimal value does $2^{1 + 4(3)}$ evaluate to?
|
||||
Back: `0x2000`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary::hex
|
||||
<!--ID: 1737232783480-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Write `0x200` in form $2^{i + 4j}$. What values of $i$ and $j$ satisfy this?
|
||||
Back: $i = 1$ and $j = 2$.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary::hex
|
||||
<!--ID: 1737232783488-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the $2$ (power) in $2^{2 + 4j}$ translated to hex?
|
||||
|
@ -220,6 +274,24 @@ Tags: binary::hex
|
|||
<!--ID: 1707432641586-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What hexadecimal value does $2^{2 + 4(1)}$ evaluate to?
|
||||
Back: `0x40`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary::hex
|
||||
<!--ID: 1737232783492-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Write `0x4000` in form $2^{i + 4j}$. What values of $i$ and $j$ satisfy this?
|
||||
Back: $i = 2$ and $j = 3$.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary::hex
|
||||
<!--ID: 1737232783497-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the $3$ in $2^{3 + 4j}$ translated to hex?
|
||||
|
@ -229,6 +301,24 @@ Tags: binary::hex
|
|||
<!--ID: 1707432641587-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What hexadecimal value does $2^{3 + 4(0)}$ evaluate to?
|
||||
Back: `0x8`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary::hex
|
||||
<!--ID: 1737232783501-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Write `0x80` in form $2^{i + 4j}$. What values of $i$ and $j$ satisfy this?
|
||||
Back: $i = 3$ and $j = 1$.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: binary::hex
|
||||
<!--ID: 1737232783505-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $n$ in $2^n$ factored to quickly write the decimal value's hex representation?
|
||||
|
|
|
@ -15,7 +15,7 @@ The $n$th term of the **triangular numbers** $(T_n)_{n \geq 0}$ is the sum of wh
|
|||
Basic
|
||||
What is a polygonal number?
|
||||
Back: A number of pebbles that can be arranged into the shape of a regular filled polygon.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325851-->
|
||||
END%%
|
||||
|
||||
|
@ -23,7 +23,7 @@ END%%
|
|||
Basic
|
||||
What is a figurate number?
|
||||
Back: Polygonal numbers and their generalizations to other dimensions.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325856-->
|
||||
END%%
|
||||
|
||||
|
@ -31,7 +31,7 @@ END%%
|
|||
Basic
|
||||
What are considered the simplest polygonal numbers?
|
||||
Back: The triangular numbers.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325859-->
|
||||
END%%
|
||||
|
||||
|
@ -39,7 +39,7 @@ END%%
|
|||
Basic
|
||||
How do polygonal numbers relate to figurate numbers?
|
||||
Back: Polygonal numbers are a subset of the figurate numbers.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325862-->
|
||||
END%%
|
||||
|
||||
|
@ -47,7 +47,7 @@ END%%
|
|||
Basic
|
||||
What is a gnomon?
|
||||
Back: The "piece" added to a figurate number to transform it to the next larger one.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325865-->
|
||||
END%%
|
||||
|
||||
|
@ -55,7 +55,7 @@ END%%
|
|||
Basic
|
||||
What shape do gnomons associated with triangular numbers take on?
|
||||
Back: Lines.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325874-->
|
||||
END%%
|
||||
|
||||
|
@ -64,7 +64,7 @@ Basic
|
|||
How are gnomons of the triangular numbers visualized?
|
||||
Back:
|
||||
![[triangular-gnomon.png]]
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325878-->
|
||||
END%%
|
||||
|
||||
|
@ -73,7 +73,7 @@ Basic
|
|||
What general term refers to the highlighted portion of pebbles in the following?
|
||||
![[triangular-gnomon.png]]
|
||||
Back: Gnomons.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325883-->
|
||||
END%%
|
||||
|
||||
|
@ -81,15 +81,24 @@ END%%
|
|||
Basic
|
||||
The triangular numbers correspond to what kind of triangles?
|
||||
Back: Equilateral triangles.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325887-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How do the triangular numbers correspond to *equilateral* triangles?
|
||||
Back:
|
||||
![[triangular-gnomon.png]]
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1737233067030-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the first triangular *and* square number?
|
||||
Back: $36$
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325891-->
|
||||
END%%
|
||||
|
||||
|
@ -97,7 +106,7 @@ END%%
|
|||
Basic
|
||||
What are the first five triangular numbers $(T_n)_{n \geq 0}$?
|
||||
Back: $0, 1, 3, 6, 10$
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325904-->
|
||||
END%%
|
||||
|
||||
|
@ -111,7 +120,7 @@ Back:
|
|||
* * *
|
||||
* * * *
|
||||
```
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325909-->
|
||||
END%%
|
||||
|
||||
|
@ -119,7 +128,7 @@ END%%
|
|||
Basic
|
||||
How is the $n$th triangular number written as a summation?
|
||||
Back: $\sum_{k=1}^n k$
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325914-->
|
||||
END%%
|
||||
|
||||
|
@ -127,7 +136,7 @@ END%%
|
|||
Basic
|
||||
What polygonal sequence is the summation analog of factorial?
|
||||
Back: The triangular numbers.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325918-->
|
||||
END%%
|
||||
|
||||
|
@ -135,7 +144,7 @@ END%%
|
|||
Basic
|
||||
What notation does Knuth introduce to denote the $n$th triangular number?
|
||||
Back: $n?$
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325922-->
|
||||
END%%
|
||||
|
||||
|
@ -143,14 +152,14 @@ END%%
|
|||
Basic
|
||||
What name does Knuth give the LHS of $n? = \sum_{k=1}^n k$?
|
||||
Back: The termial.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325927-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {1:term}ial is to {2:$n?$} as the {2:factor}ial is to {1:$n!$}.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325931-->
|
||||
END%%
|
||||
|
||||
|
@ -158,7 +167,7 @@ END%%
|
|||
Basic
|
||||
What closed formula is traditionally used to compute the $n$th triangular number?
|
||||
Back: $\large{\frac{n(n + 1)}{2}}$
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325936-->
|
||||
END%%
|
||||
|
||||
|
@ -166,7 +175,7 @@ END%%
|
|||
Basic
|
||||
What is the recurrence relation in the recursive definition of triangular numbers $(T_n)_{n \geq 0}$?
|
||||
Back: $T_n = T_{n-1} + n$
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709422558652-->
|
||||
END%%
|
||||
|
||||
|
@ -174,7 +183,7 @@ END%%
|
|||
Basic
|
||||
What is the initial condition(s) in the recursive definition of triangular numbers $(T_n)_{n \geq 0}$?
|
||||
Back: $T_0 = 0$
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709422558656-->
|
||||
END%%
|
||||
|
||||
|
@ -196,7 +205,7 @@ END%%
|
|||
Basic
|
||||
What combinatorial closed formula is used to compute the $n$th triangular number?
|
||||
Back: $\binom{n + 1}{2}$
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325949-->
|
||||
END%%
|
||||
|
||||
|
@ -204,7 +213,7 @@ END%%
|
|||
Basic
|
||||
What is the combinatorial explanation as to why the $n$th triangular number is $\binom{n + 1}{2}$?
|
||||
Back: $\sum_{k=1}^n k$ is the number of ways distinct pairs can be made from $n + 1$ objects.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325956-->
|
||||
END%%
|
||||
|
||||
|
@ -213,7 +222,7 @@ Basic
|
|||
Where in Pascal's triangle are the natural numbers embedded?
|
||||
Back: Along the second leftward diagonal:
|
||||
![[pascals-triangle.png]]
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325963-->
|
||||
END%%
|
||||
|
||||
|
@ -222,7 +231,7 @@ Basic
|
|||
Where in Pascal's triangle are the triangular numbers embedded?
|
||||
Back: Along the third leftward diagonal:
|
||||
![[pascals-triangle.png]]
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325970-->
|
||||
END%%
|
||||
|
||||
|
@ -236,7 +245,7 @@ for (int i = 1; i <= n; ++i) {
|
|||
}
|
||||
```
|
||||
Back: The $n$th triangular number.
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325976-->
|
||||
END%%
|
||||
|
||||
|
@ -250,7 +259,7 @@ Back: $2 \cdot T_n$ is the number of units in an $n \times (n + 1)$ rectangle, e
|
|||
* * - - -
|
||||
* - - - -
|
||||
```
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
<!--ID: 1709419325981-->
|
||||
END%%
|
||||
|
||||
|
@ -265,4 +274,4 @@ END%%
|
|||
## Bibliography
|
||||
|
||||
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
||||
* “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||
* “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
|
@ -534,6 +534,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why is edge $\langle b, s \rangle$ classified as a back edge?
|
||||
![[dfs-edge-classification.png]]
|
||||
Back: Because $s$ is an ancestor of $b$.
|
||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||
|
|
|
@ -335,6 +335,77 @@ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combi
|
|||
<!--ID: 1735413657674-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assume basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. *Why* isn't $((\mathbf{S}(\mathbf{K}\mathbf{S}))\mathbf{K})$ a combinator?
|
||||
Back: N/A. It is.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1737212699921-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assume basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. *Why* isn't $((\mathbf{S}(\mathbf{K}x))((\mathbf{S}\mathbf{K})\mathbf{K}))$ a combinator?
|
||||
Back: It contains atom $x$ which isn't a basic combinator.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1737212699927-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assume basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. *Why* isn't $((\mathbf{S}(\mathbf{K}0))((\mathbf{S}\mathbf{K})\mathbf{K}))$ a combinator?
|
||||
Back: It contains atom $0$ which isn't a basic combinator.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1737212699932-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assume basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. *Why* isn't $((\mathbf{S}(\mathbf{K}\mathbf{S}))\mathbf{K})$ a closed term?
|
||||
Back: N/A. It is.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1737212699937-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assume basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. *Why* isn't $((\mathbf{S}(\mathbf{K}x))((\mathbf{S}\mathbf{K})\mathbf{K}))$ a closed term?
|
||||
Back: It contains variable $x$.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1737212699942-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Assume basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. *Why* isn't $((\mathbf{S}(\mathbf{K}0))((\mathbf{S}\mathbf{K})\mathbf{K}))$ a closed term?
|
||||
Back: N/A. It is.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1737212699947-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
By convention, parentheses in combinatory logic are {left}-associative.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1737245400699-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is $CL$-term $UVWX$ written with parentheses reintroduced?
|
||||
Back: $(((UV)W)X)$
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1737245400709-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In combinatory logic, is $UVW \equiv ((UV)W)$?
|
||||
Back: Yes.
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1737245400737-->
|
||||
END%%
|
||||
|
||||
## Basic Combinators
|
||||
|
||||
The combinatory logic is a notation that eliminate the need for quantified variables. We start with basis $\mathbf{S}$, $\mathbf{K}$, and $\mathbf{I}$. These **basic combinators** are defined as:
|
||||
|
|
|
@ -247,11 +247,10 @@ Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third ed
|
|||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A language is a set satisfying what?
|
||||
Back: It contains strings over some alphabet.
|
||||
Cloze
|
||||
A {language} is a set containing {strings} over some {alphabet}.
|
||||
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
|
||||
<!--ID: 1734903366709-->
|
||||
<!--ID: 1737232847428-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
|
|
|
@ -8,7 +8,7 @@ tags:
|
|||
|
||||
## Overview
|
||||
|
||||
The simplest extension to RDF that allows a modeler to manage inference is **RDF Schema** (RDFS).
|
||||
The simplest extension to RDF that allows a modeler to manage inference is **RDF Schema** (RDFS). Triples that are inserted directly into an underlying RDF store are called **asserted triples**. Triples that are derived from inference rules are called **inferred triples**.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
|
@ -26,6 +26,44 @@ Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web
|
|||
<!--ID: 1736629473653-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
An {asserted} triple is contrary to an {inferred} triple.
|
||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||
<!--ID: 1737167693491-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a triple to be asserted?
|
||||
Back: The triple exists directly in the underlying RDF store.
|
||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||
<!--ID: 1737167693496-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does it mean for a triple to be inferred?
|
||||
Back: The triple is derived from some set of inference rules.
|
||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||
<!--ID: 1737167693501-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{Asserted} triples are used to derive {inferred} triples.
|
||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||
<!--ID: 1737167693506-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
When might a triple be both asserted and inferred?
|
||||
Back: When the inference engine infers an already existing triple.
|
||||
Reference: Allemang, Dean, James A. Hendler, and Fabien L. Gandon. _Semantic Web for the Working Ontologist_. 3e ed. ACM Books 33. New York: Association for computing machinery, 2020.
|
||||
<!--ID: 1737167693510-->
|
||||
END%%
|
||||
|
||||
## Classes
|
||||
|
||||
All things described by RDF are called **resources**. Resources may be divided into groups called **classes**. Classes are themselves resources. The `rdf:type` property may be used to state that a resource is an instance of a class. Associated with a class is a set, called the **class extension** of the class, which is the set of the instances of the class. A class may be a member of its own class extension.
|
||||
|
|
|
@ -213,22 +213,6 @@ Reference: James Jones, “Shifting, Reflecting, and Stretching Graphs,” acces
|
|||
<!--ID: 1734620943926-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of horizontal and/or vertical transformations "act inversely"?
|
||||
Back: Horizontal transformations.
|
||||
Reference: James Jones, “Shifting, Reflecting, and Stretching Graphs,” accessed December 6, 2024, [https://people.richland.edu/james/lecture/m116/functions/translations.html](https://people.richland.edu/james/lecture/m116/functions/translations.html).
|
||||
<!--ID: 1734620943931-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which of horizontal and/or vertical transformations "act normally"?
|
||||
Back: Vertical transformations.
|
||||
Reference: James Jones, “Shifting, Reflecting, and Stretching Graphs,” accessed December 6, 2024, [https://people.richland.edu/james/lecture/m116/functions/translations.html](https://people.richland.edu/james/lecture/m116/functions/translations.html).
|
||||
<!--ID: 1734620943937-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the graph of $y = f(x)$ transformed in the graph of $y = \frac{1}{2}f(\frac{x}{3})$?
|
||||
|
|
|
@ -0,0 +1,200 @@
|
|||
---
|
||||
title: Circle
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: geometry::circle
|
||||
tags:
|
||||
- circle
|
||||
- geometry
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
A **circle** is a shape consisting of all points in a plane at a given distance from a given point, i.e. the **center**. In this way, a circle is characterized by its center and **radius**, the distance from the center to any point of the circle. The perimeter of a circle is known as its **circumference**.
|
||||
|
||||
On the [[cartesian|Cartesian coordinate system]], the equation of a circle with radius $r$ and center $\langle h, k \rangle$ is $$(x - h)^2 + (y - k)^2 = r^2.$$
|
||||
|
||||
Such a circle has circumference $2\pi r$ and [[area]] $\pi r^2$.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A circle is characterized by what two properties?
|
||||
Back: Its center and its radius.
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693438-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In plain English, describe what a circle is.
|
||||
Back: A set of points at a given distance from some given point.
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693441-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The perimeter of a circle is known as what?
|
||||
Back: Its circumference.
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693445-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the Cartesian equation of a circle with radius $r$ and center $\langle h, k \rangle$?
|
||||
Back: $(x - h)^2 + (y - k)^2 = r^2$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693448-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given indeterminates $x$ and $y$, the following equation describes what shape? $$(x - h)^2 + (y - k)^2 = r^2$$
|
||||
Back: A circle with radius $r$ and center $\langle h, k \rangle$.
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693451-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider a circle with radius $r$. What does its circumference evaluate to?
|
||||
Back: $2 \pi r$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693455-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider a circle with radius $r$. What is its area?
|
||||
Back: $\pi r^2$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693458-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider a circle with diameter $d$. What does its circumference evaluate to?
|
||||
Back: $\pi d$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693462-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider a circle with diameter $d$. What its area?
|
||||
Back: $\pi \left(\frac{d}{2}\right)^2$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693465-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider a circle with radius $r$. What does the following evaluate to? $$2 \pi r$$
|
||||
Back: Its circumference.
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693468-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider a circle with radius $r$. What does the following evaluate to? $$\pi r^2$$
|
||||
Back: Its area.
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693472-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the Cartesian equation of the following shape?
|
||||
![[unit-circle.png]]
|
||||
Back: $x^2 + y^2 = 1$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693476-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the Cartesian equation of the following shape?
|
||||
![[circle-right.png]]
|
||||
Back: $(x - 2)^2 + y^2 = 4$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693481-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the Cartesian equation of the following shape?
|
||||
![[circle-left-down.png]]
|
||||
Back: $(x + 1)^2 + (y + 1)^2 = 4$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167693485-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the Cartesian equation of the following shape?
|
||||
![[circle-left-up.png]]
|
||||
Back: $(x + 1)^2 + (y - 1)^2 = 4$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737167904156-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Rewrite equation $x^2 + y^2 = 1$ shifted left by $a > 0$.
|
||||
Back: $(x + a)^2 + y^2 = 1$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737168379559-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Rewrite equation $x^2 + y^2 = 1$ shifted up by $b > 0$.
|
||||
Back: $x^2 + (y - b)^2 = 1$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737168379562-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Rewrite equation $x^2 + y^2 = 1$ shifted right by $a > 0$.
|
||||
Back: $(x - a)^2 + y^2 = 1$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737168379565-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Rewrite equation $x^2 + y^2 = 1$ shifted down by $b > 0$.
|
||||
Back: $x^2 + (y + b)^2 = 1$
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737168379568-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In what direction(s) is the unit circle shifted in the following? $$(x - 3)^2 + (y - 3)^2 = 1$$
|
||||
Back: Right by $3$ and up by $3$.
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737168379571-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In what direction(s) is the unit circle shifted in the following? $$(x + 3)^2 + (y - 3)^2 = 1$$
|
||||
Back: Left by $3$ and up by $3$.
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737168379574-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In what direction(s) is the unit circle shifted in the following? $$(x - 3)^2 + (y + 3)^2 = 1$$
|
||||
Back: Right by $3$ and down by $3$.
|
||||
Reference: “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
||||
<!--ID: 1737168379578-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* “Circle,” in _Wikipedia_, January 8, 2025, [https://en.wikipedia.org/w/index.php?title=Circle](https://en.wikipedia.org/w/index.php?title=Circle&oldid=1268270102).
|
After Width: | Height: | Size: 17 KiB |
After Width: | Height: | Size: 16 KiB |
After Width: | Height: | Size: 15 KiB |
After Width: | Height: | Size: 18 KiB |
|
@ -214,7 +214,7 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is expression $\lambda x. \lambda y. MN$ written with parentheses reintroduced?
|
||||
How is $\lambda$-term $\lambda x. \lambda y. MN$ written with parentheses reintroduced?
|
||||
Back: $(\lambda x. (\lambda y. (MN)))$
|
||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||
<!--ID: 1716498992530-->
|
||||
|
|
|
@ -10,10 +10,8 @@ tags:
|
|||
|
||||
To build an executable, a linker must perform two main tasks:
|
||||
|
||||
1. **Symbol resolution**. The linker must associate each symbol reference with exactly one symbol definition.
|
||||
2. **Relocation**. The linker must relocate code and data sections by associating a memory location with each symbol definition, and then modifying all of the references to those symbols so that they point to this memory location.
|
||||
|
||||
The linker blindly performs relocations using detailed instructions generated by the assembler called **relocation entries**.
|
||||
1. **Symbol resolution**. The linker phase in which each symbol reference is associated with exactly one symbol definition.
|
||||
2. **Relocation**. The linker phase in which code and data sections across input modules are combined. Each section, along with the symbols defined in them, are assigned unique run-time memory addresses. Additionally, references to symbols are updated so they point to the correct run-time addresses.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
|
@ -31,6 +29,14 @@ Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Program
|
|||
<!--ID: 1733671136078-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
After which linker phase is the size of the code and data sections of each input object module known?
|
||||
Back: Symbol resolution.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1737257167718-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the goal of symbol resolution?
|
||||
|
@ -39,6 +45,13 @@ Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Program
|
|||
<!--ID: 1733671136081-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {symbol resolution} phase associates each {symbol reference} with exactly one {symbol definition}.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1733671136092-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the goal of relocation?
|
||||
|
@ -55,13 +68,6 @@ Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Program
|
|||
<!--ID: 1733671136088-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {symbol resolution} phase associates each {symbol reference} with exactly one {symbol definition}.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1733671136092-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {relocation} phase assigns a {memory location} to each symbol and {updates references} accordingly.
|
||||
|
@ -79,24 +85,25 @@ END%%
|
|||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is emitted by the assembler to help the linker relocate sections?
|
||||
Back: Relocation entries.
|
||||
Which linker phase combines code and data sections of the same type into a new aggregate section?
|
||||
Back: Relocation.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1733671136107-->
|
||||
<!--ID: 1737257167723-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which linker phase is responsible for building up the `.symtab` section?
|
||||
Back: Symbol resolution.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1737257167727-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The assembler outputs {relocation entries} to guide the linker during {relocation}.
|
||||
{Relocatable} object files are merged together to make an {executable} object file.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1733671136112-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {1:assembler} outputs relocation entries to guide the {1:linker} during relocation.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1733671136117-->
|
||||
<!--ID: 1737257167732-->
|
||||
END%%
|
||||
|
||||
## Object Files
|
||||
|
|
|
@ -637,6 +637,335 @@ Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Program
|
|||
<!--ID: 1736632025924-->
|
||||
END%%
|
||||
|
||||
## Relocation Entries
|
||||
|
||||
Whenever the assembler encounters a reference to an object whose ultimate location is unknown, it generates a **relocation entry** that tells the linker how to modify the reference when it merges the object file into an executable. Each entry looks something like:
|
||||
|
||||
```c
|
||||
struct Elf64_Rela {
|
||||
long offset; // Offset of the reference to relocate
|
||||
long type : 32, // Relocation type
|
||||
symbol : 32; // Symbol table index
|
||||
long addend; // Additional constant used to bias the value
|
||||
};
|
||||
```
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is emitted by the assembler to help the linker relocate sections?
|
||||
Back: Relocation entries.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1733671136107-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The assembler outputs {relocation entries} to guide the linker during {relocation}.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1733671136112-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {1:assembler} outputs relocation entries to guide the {1:linker} during relocation.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1733671136117-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which component of a compiler driver produces relocation entries?
|
||||
Back: The assembler.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1737257167650-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How many relocation entries are produced for any given object module?
|
||||
Back: One for every reference whose ultimate address is unknown.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1737257167677-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* aren't relocation entries relevant for executable object files?
|
||||
Back: All memory addresses should be resolved once the executable is produced.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1737257167683-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Relocation entries for {data} are placed in {`.rel.data`}.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1737257167690-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Relocation entries for {code} are placed in {`.rel.text`}.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1737257167696-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
At what point during linking are relocation entries no longer necessary?
|
||||
Back: When the fully merged executable object file is produced.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1737257167702-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Relocation entries are included in what kind of object module?
|
||||
Back: Relocatable object modules.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1737257167707-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
A relocation entry corresponds to what kind of C construct?
|
||||
Back: A `struct`.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17
|
||||
<!--ID: 1737257167712-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider the following ELF relocation entry. What is the purpose of `offset`?
|
||||
```c
|
||||
struct Elf64_Rela {
|
||||
long offset;
|
||||
long type : 32;
|
||||
long symbol : 32;
|
||||
long addend;
|
||||
};
|
||||
```
|
||||
Back: It is the offset of the reference to relocate.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385837-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider the following ELF relocation entry. What is the `offset` measured relative to?
|
||||
```c
|
||||
struct Elf64_Rela {
|
||||
long offset;
|
||||
long type : 32;
|
||||
long symbol : 32;
|
||||
long addend;
|
||||
};
|
||||
```
|
||||
Back: The start of the section the reference is located in.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385840-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider the following ELF relocation entry. What is the purpose of `symbol`?
|
||||
```c
|
||||
struct Elf64_Rela {
|
||||
long offset;
|
||||
long type : 32;
|
||||
long symbol : 32;
|
||||
long addend;
|
||||
};
|
||||
```
|
||||
Back: It identifies the symbol the modified reference should point to.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385843-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider the following ELF relocation entry. `symbol` is an index into what table?
|
||||
```c
|
||||
struct Elf64_Rela {
|
||||
long offset;
|
||||
long type : 32;
|
||||
long symbol : 32;
|
||||
long addend;
|
||||
};
|
||||
```
|
||||
Back: `.symtab`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385846-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider the following ELF relocation entry. What is the purpose of `addend`?
|
||||
```c
|
||||
struct Elf64_Rela {
|
||||
long offset;
|
||||
long type : 32;
|
||||
long symbol : 32;
|
||||
long addend;
|
||||
};
|
||||
```
|
||||
Back: To bias the value of the modified reference.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385849-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider the following ELF relocation entry. What is the purpose of `type`?
|
||||
```c
|
||||
struct Elf64_Rela {
|
||||
long offset;
|
||||
long type : 32;
|
||||
long symbol : 32;
|
||||
long addend;
|
||||
};
|
||||
```
|
||||
Back: To indicate to the linker what algorithm should be used to compute the relocated address.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385853-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider the following ELF relocation entry. What are the two most basic values of `type`?
|
||||
```c
|
||||
struct Elf64_Rela {
|
||||
long offset;
|
||||
long type : 32;
|
||||
long symbol : 32;
|
||||
long addend;
|
||||
};
|
||||
```
|
||||
Back: `R_X86_64_32` and `R_X86_64_PC32`.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385856-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{1:`R_X86_64_32`} is to {2:absolute} whereas {2:`R_X86_64_PC32`} is to {1:relative}.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: linker::elf x86-64
|
||||
<!--ID: 1737320385860-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the significance of `R` in type `R_X86_64_32`?
|
||||
Back: It is the prefix used for relocation entry `type` values.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385864-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the significance of `32` in type `R_X86_64_32`?
|
||||
Back: The reference is relocated using a 32-bit absolute address.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385867-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the significance of `PC` in type `R_X86_64_PC32`?
|
||||
Back: It is short for **p**rogram **c**ounter.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385871-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the significance of `PC32` in type `R_X86_64_PC32`?
|
||||
Back: The reference is relocated using a 32-bit PC-relative address.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385875-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
`R_X86_64_32` is a possible value for what field in the following ELF relocation entry?
|
||||
```c
|
||||
struct Elf64_Rela {
|
||||
long offset;
|
||||
long type : 32;
|
||||
long symbol : 32;
|
||||
long addend;
|
||||
};
|
||||
```
|
||||
Back: `type`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385879-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
`R_X86_64_PC32` is a possible value for what field in the following ELF relocation entry?
|
||||
```c
|
||||
struct Elf64_Rela {
|
||||
long offset;
|
||||
long type : 32;
|
||||
long symbol : 32;
|
||||
long addend;
|
||||
};
|
||||
```
|
||||
Back: `type`
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385883-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider the following ELF relocation entry. What should `type` be if relocating PC-relatively?
|
||||
```c
|
||||
struct Elf64_Rela {
|
||||
long offset;
|
||||
long type : 32;
|
||||
long symbol : 32;
|
||||
long addend;
|
||||
};
|
||||
```
|
||||
Back: `R_X86_64_PC32`.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385887-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Consider the following ELF relocation entry. What should `type` be if relocating absolutely?
|
||||
```c
|
||||
struct Elf64_Rela {
|
||||
long offset;
|
||||
long type : 32;
|
||||
long symbol : 32;
|
||||
long addend;
|
||||
};
|
||||
```
|
||||
Back: `R_X86_64_32`.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
Tags: c17 linker::elf x86-64
|
||||
<!--ID: 1737320385894-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
|
@ -1035,6 +1035,9 @@ END%%
|
|||
|
||||
The general form of the **iterative command** is: $$\begin{align*} \textbf{do } & B_1 \rightarrow S_1 \\ \textbf{ | } & B_2 \rightarrow S_2 \\ & \quad\cdots \\ \textbf{ | } & B_n \rightarrow S_n \\ \textbf{od } & \end{align*}$$
|
||||
|
||||
We denote the iterative command as $\text{DO}$ and define $\text{DO}$ in terms of $wp$ as: $$wp(\text{DO}, R) = \exists k \geq 0, H_k(R)$$
|
||||
where $H_k$ is given [[algebra/sequences/index|recursive definition]]: $$\begin{align*} H_0(R) & = \neg (B_1 \lor \cdots \lor B_n) \land R \\ H_{k+1}(R) & = H_0(R) \lor wp(\text{IF}, H_k(R)) \end{align*}$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
The conventional `while` statement corresponds to what command?
|
||||
|
@ -1123,6 +1126,130 @@ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in
|
|||
<!--ID: 1735873599850-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
{1:$\text{IF}$} is to {2:$abort$} whereas {2:$\text{DO}$} is to {1:$skip$}.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737187609860-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Given associated recursive definition $H_k$, what is the formal definition of $\text{DO}$?
|
||||
Back: For some predicate $R$, $wp(\text{DO}, R) = \exists k \geq 0, H_k(R)$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737187609865-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In the following definition, what does $H_k(R)$ represent? $$wp(\text{DO}, R) = \exists k \geq 0, H_k(R)$$
|
||||
Back: The set of states in which execution of $\text{DO}$ terminates in $k$ or fewer iterations.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737187609868-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In the following definition, how is $H_0$ defined? $$wp(\text{DO}, R) = \exists k \geq 0, H_k(R)$$
|
||||
Back: Given guards $B_1, \ldots, B_n$, as $H_0 = \neg (B_1 \lor \cdots \lor B_n) \land R$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737187609870-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In the following definition, what set of states does $H_0(R)$ correspond to? $$wp(\text{DO}, R) = \exists k \geq 0, H_k(R)$$
|
||||
Back: Those in which $\text{DO}$ finishes execution in $0$ iterations with $R$ true.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737188069810-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In the following definition, how is $H_{k+1}$ defined? $$wp(\text{DO}, R) = \exists k \geq 0, H_k(R)$$
|
||||
Back: As $H_{k+1}(R) = H_0(R) \lor wp(\text{IF}, H_k(R))$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737187609873-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
In the following definition, what set of states does $H_k(R)$ correspond to? $$wp(\text{DO}, R) = \exists k \geq 0, H_k(R)$$
|
||||
Back: Those in which $\text{DO}$ finishes execution in $k$ or fewer iterations with $R$ true.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737188069815-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $H_k$ denote the associated recursive definition of $wp(\text{DO}, R)$. *Why* does $H_k \Rightarrow H_{k+1}$?
|
||||
Back: $H_{k+1}$ is the set of states in which $\text{DO}$ finishes execution in $k$ *or fewer* iterations.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737188069819-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Let $H_k$ denote the associated recursive definition of $wp(\text{DO}, R)$. *Why* does $H_{k + 1} \Rightarrow H_k$?
|
||||
Back: N/A. It doesn't.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737188069822-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the associated recursive definition of $wp(\text{DO}, R)$ described in plain English?
|
||||
Back: As the set of states in which execution of $\text{DO}$ terminates in a finite number of iterations with $R$ true.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737187609876-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Iterative command {$\textbf{do od}$} is equivalent to command {$skip$}.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737187609879-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* does command $\textbf{do od}$ skip?
|
||||
Back: The $\text{DO}$ command iterates until no guard is satisfied.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737187609882-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What does $wp(\textbf{do } T \rightarrow skip \textbf{ od}, R)$ evaluate to?
|
||||
Back: $F$
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737187609885-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* does $wp(\textbf{do } T \rightarrow skip \textbf{ od}, R)$ evaluate to $F$?
|
||||
Back: $\textbf{do } T \rightarrow skip \text{ od}$ never terminates.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737187609888-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
The {$\text{DO}$} command corresponds to zero or more {$\text{IF}$} commands.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737187609892-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Let $R$ be a predicate. Then $wp(\text{DO}, R) = \exists k,$ {$k \geq 0$} $\land$ $H_k(R)$.
|
||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||
<!--ID: 1737187609895-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|
@ -199,7 +199,7 @@ END%%
|
|||
%%ANKI
|
||||
Basic
|
||||
Let $A$ and $B$ be disjoint sets. $f \colon A \rightarrow B$ is an operation on what set?
|
||||
Back: N/A.
|
||||
Back: N/A. $f$ is not an operation.
|
||||
Reference: “Operation (Mathematics).” In _Wikipedia_, October 10, 2024. [https://en.wikipedia.org/w/index.php?title=Operation_(mathematics)](https://en.wikipedia.org/w/index.php?title=Operation_(mathematics)&oldid=1250395938).
|
||||
<!--ID: 1729804914207-->
|
||||
END%%
|
||||
|
|
After Width: | Height: | Size: 19 KiB |
After Width: | Height: | Size: 19 KiB |
After Width: | Height: | Size: 19 KiB |
After Width: | Height: | Size: 19 KiB |
|
@ -0,0 +1,215 @@
|
|||
---
|
||||
title: Trigonometry
|
||||
TARGET DECK: Obsidian::STEM
|
||||
FILE TAGS: trigonometry
|
||||
tags:
|
||||
- trigonometry
|
||||
---
|
||||
|
||||
## Overview
|
||||
|
||||
Trigonometry was originally derived from a Greek word meaning "triangle measuring". It has generalized to studying periodicity.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Trigonometry was originally the study of what geometric shape?
|
||||
Back: Triangles.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737167693405-->
|
||||
END%%
|
||||
|
||||
## Unit Circle
|
||||
|
||||
On the [[cartesian|Cartesian coordinate system]], the **unit circle** is the [[circle]] with center at the origin and radius $1$.
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
On the Cartesian coordinate system, what is the unit circle?
|
||||
Back: The circle with center at the origin and radius $1$.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737167693410-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
On the Cartesian coordinate system, where is the center of the unit circle located?
|
||||
Back: At $\langle 0, 0 \rangle$, i.e. the origin.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737167693413-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the radius of the unit circle?
|
||||
Back: $1$
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737167693416-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the diameter of the unit circle?
|
||||
Back: $2$
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737167693419-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the circumference of the unit circle?
|
||||
Back: $2\pi$
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737167693428-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the area of the unit circle?
|
||||
Back: $\pi$
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737167693435-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which real numbers does the point $\langle 0, 0 \rangle$ on the unit circle map to?
|
||||
Back: N/A. This point is not on the circle itself.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737168795237-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which real numbers does the point $\langle 1, 0 \rangle$ on the unit circle map to?
|
||||
Back: $2\pi k$ for all $k \in \mathbb{Z}$.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737168795241-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which point on the unit circle does number $2\pi$ map to?
|
||||
Back: $\langle 1, 0 \rangle$
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737168795265-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which point on the unit circle does number $\frac{3\pi}{2}$ map to?
|
||||
Back: $\langle 0, -1 \rangle$
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737168795244-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which real numbers does the point $\langle 0, -1 \rangle$ on the unit circle map to?
|
||||
Back:$\frac{3\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737168795269-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which real numbers does the point $\langle 0, 1 \rangle$ on the unit circle map to?
|
||||
Back: $\frac{\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737168795248-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which point on the unit circle does number $\frac{\pi}{2}$ map to?
|
||||
Back: $\langle 0, 1 \rangle$
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737168795261-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which point on the unit circle does number $\pi$ map to?
|
||||
Back: $\langle -1, 0 \rangle$
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737168795252-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which real numbers does the point $\langle -1, 0 \rangle$ on the unit circle map to?
|
||||
Back: $\pi + 2\pi k$ for all $k \in \mathbb{Z}$.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737168795256-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which real numbers correspond to the highlighted point on the unit circle?
|
||||
![[unit-circle-1-0.png]]
|
||||
Back: $2 \pi k$ for all $k \in \mathbb{Z}$.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737169243685-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which real numbers correspond to the highlighted point on the unit circle?
|
||||
![[unit-circle-0-1.png]]
|
||||
Back: $\frac{\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737169243690-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which real numbers correspond to the highlighted point on the unit circle?
|
||||
![[unit-circle-n1-0.png]]
|
||||
Back: $\pi + 2\pi k$ for all $k \in \mathbb{Z}$.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737169243692-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Which real numbers correspond to the highlighted point on the unit circle?
|
||||
![[unit-circle-0-n1.png]]
|
||||
Back: $\frac{3\pi}{2} + 2\pi k$ for all $k \in \mathbb{Z}$.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737169243695-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* does point $\langle 1, 0 \rangle$ on the unit circle coincide with real number $2\pi$?
|
||||
Back: Because the circumference of the unit circle is $2\pi$.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737169683142-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* does point $\langle -1, 0 \rangle$ on the unit circle coincide with real number $\pi$?
|
||||
Back: Because half the circumference of the unit circle is $\pi$.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737169683151-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the "periodicity" of the unit circle?
|
||||
Back: $2 \pi$
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737230158153-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What property of the unit circle does its periodicity correspond to?
|
||||
Back: Its circumference.
|
||||
Reference: Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|
||||
<!--ID: 1737230158163-->
|
||||
END%%
|
||||
|
||||
## Bibliography
|
||||
|
||||
* Ted Sundstrom and Steven Schlicker, _Trigonometry_, 2024.
|