36 lines
1.1 KiB
Plaintext
36 lines
1.1 KiB
Plaintext
import Common.List.Basic
|
||
import Common.Set.Intervals.Partition
|
||
|
||
/-! # Common.Set.Intervals.StepFunction
|
||
|
||
Characterization of step functions.
|
||
-/
|
||
|
||
namespace Set.Intervals
|
||
|
||
/--
|
||
A function `f`, whose domain is a closed interval `[a, b]`, is a `StepFunction`
|
||
if there exists a `Partition` `P = {x₀, x₁, …, xₙ}` of `[a, b]` such that `f` is
|
||
constant on each open subinterval of `P`.
|
||
-/
|
||
structure StepFunction (α : Type _) [Preorder α] [@DecidableRel α LT.lt] where
|
||
/- A partition of some closed interval `[a, b]`. -/
|
||
partition : Partition α
|
||
/-- A function whose domain is a closed interval `[a, b]`. -/
|
||
function : ∀ x ∈ Icc partition.a partition.b, α
|
||
/-- Ensure the function is constant on each open subinterval of `p`. -/
|
||
const_open_subintervals :
|
||
∀ (hI : I ∈ partition.openSubintervals), ∃ c : α, ∀ (hy : y ∈ I),
|
||
function y (Partition.mem_open_subinterval_mem_closed_interval hI hy) = c
|
||
|
||
namespace StepFunction
|
||
|
||
/--
|
||
The locus of points between the `x`-axis and the function.
|
||
-/
|
||
def toSet [Preorder α] [@DecidableRel α LT.lt]
|
||
(s : StepFunction α) : Set (α × α) := sorry
|
||
|
||
end StepFunction
|
||
|
||
end Set.Intervals |