import Common.List.Basic import Common.Set.Intervals.Partition /-! # Common.Set.Intervals.StepFunction Characterization of step functions. -/ namespace Set.Intervals /-- A function `f`, whose domain is a closed interval `[a, b]`, is a `StepFunction` if there exists a `Partition` `P = {x₀, x₁, …, xₙ}` of `[a, b]` such that `f` is constant on each open subinterval of `P`. -/ structure StepFunction (α : Type _) [Preorder α] [@DecidableRel α LT.lt] where /- A partition of some closed interval `[a, b]`. -/ partition : Partition α /-- A function whose domain is a closed interval `[a, b]`. -/ function : ∀ x ∈ Icc partition.a partition.b, α /-- Ensure the function is constant on each open subinterval of `p`. -/ const_open_subintervals : ∀ (hI : I ∈ partition.openSubintervals), ∃ c : α, ∀ (hy : y ∈ I), function y (Partition.mem_open_subinterval_mem_closed_interval hI hy) = c namespace StepFunction /-- The locus of points between the `x`-axis and the function. -/ def toSet [Preorder α] [@DecidableRel α LT.lt] (s : StepFunction α) : Set (α × α) := sorry end StepFunction end Set.Intervals