bookshelf/Common/Set/Intervals/StepFunction.lean

36 lines
1.1 KiB
Plaintext
Raw Normal View History

import Common.List.Basic
import Common.Set.Intervals.Partition
/-! # Common.Set.Intervals.StepFunction
Characterization of step functions.
-/
namespace Set.Intervals
/--
A function `f`, whose domain is a closed interval `[a, b]`, is a `StepFunction`
if there exists a `Partition` `P = {x₀, x₁, …, xₙ}` of `[a, b]` such that `f` is
constant on each open subinterval of `P`.
-/
structure StepFunction (α : Type _) [Preorder α] [@DecidableRel α LT.lt] where
/- A partition of some closed interval `[a, b]`. -/
partition : Partition α
/-- A function whose domain is a closed interval `[a, b]`. -/
function : ∀ x ∈ Icc partition.a partition.b, α
/-- Ensure the function is constant on each open subinterval of `p`. -/
const_open_subintervals :
∀ (hI : I ∈ partition.openSubintervals), ∃ c : α, ∀ (hy : y ∈ I),
function y (Partition.mem_open_subinterval_mem_closed_interval hI hy) = c
namespace StepFunction
/--
The locus of points between the `x`-axis and the function.
-/
def toSet [Preorder α] [@DecidableRel α LT.lt]
(s : StepFunction α) : Set (α × α) := sorry
end StepFunction
end Set.Intervals