36 lines
1.1 KiB
Plaintext
36 lines
1.1 KiB
Plaintext
|
import Common.List.Basic
|
|||
|
import Common.Set.Intervals.Partition
|
|||
|
|
|||
|
/-! # Common.Set.Intervals.StepFunction
|
|||
|
|
|||
|
Characterization of step functions.
|
|||
|
-/
|
|||
|
|
|||
|
namespace Set.Intervals
|
|||
|
|
|||
|
/--
|
|||
|
A function `f`, whose domain is a closed interval `[a, b]`, is a `StepFunction`
|
|||
|
if there exists a `Partition` `P = {x₀, x₁, …, xₙ}` of `[a, b]` such that `f` is
|
|||
|
constant on each open subinterval of `P`.
|
|||
|
-/
|
|||
|
structure StepFunction (α : Type _) [Preorder α] [@DecidableRel α LT.lt] where
|
|||
|
/- A partition of some closed interval `[a, b]`. -/
|
|||
|
partition : Partition α
|
|||
|
/-- A function whose domain is a closed interval `[a, b]`. -/
|
|||
|
function : ∀ x ∈ Icc partition.a partition.b, α
|
|||
|
/-- Ensure the function is constant on each open subinterval of `p`. -/
|
|||
|
const_open_subintervals :
|
|||
|
∀ (hI : I ∈ partition.openSubintervals), ∃ c : α, ∀ (hy : y ∈ I),
|
|||
|
function y (Partition.mem_open_subinterval_mem_closed_interval hI hy) = c
|
|||
|
|
|||
|
namespace StepFunction
|
|||
|
|
|||
|
/--
|
|||
|
The locus of points between the `x`-axis and the function.
|
|||
|
-/
|
|||
|
def toSet [Preorder α] [@DecidableRel α LT.lt]
|
|||
|
(s : StepFunction α) : Set (α × α) := sorry
|
|||
|
|
|||
|
end StepFunction
|
|||
|
|
|||
|
end Set.Intervals
|