Enderton. Well-ordering principle and reorder notes below links.
parent
1c988dc9e9
commit
ca58d67d8e
|
@ -213,6 +213,10 @@
|
||||||
and it is "closed under \nameref{ref:successor}", i.e.
|
and it is "closed under \nameref{ref:successor}", i.e.
|
||||||
$$(\forall a \in A) a^+ \in A.$$
|
$$(\forall a \in A) a^+ \in A.$$
|
||||||
|
|
||||||
|
\lean{Prelude}{Nat}
|
||||||
|
|
||||||
|
\lean{Mathlib/Init/Set}{Set.univ}
|
||||||
|
|
||||||
\begin{note}
|
\begin{note}
|
||||||
Induction is baked into Lean's type system.
|
Induction is baked into Lean's type system.
|
||||||
In particular, the $\emptyset$ and "closed under successor" properties are
|
In particular, the $\emptyset$ and "closed under successor" properties are
|
||||||
|
@ -220,10 +224,6 @@
|
||||||
respectively.
|
respectively.
|
||||||
\end{note}
|
\end{note}
|
||||||
|
|
||||||
\lean{Prelude}{Nat}
|
|
||||||
|
|
||||||
\lean{Mathlib/Init/Set}{Set.univ}
|
|
||||||
|
|
||||||
\section{\defined{Infinity Axiom}}%
|
\section{\defined{Infinity Axiom}}%
|
||||||
\hyperlabel{ref:infinity-axiom}
|
\hyperlabel{ref:infinity-axiom}
|
||||||
|
|
||||||
|
@ -266,6 +266,8 @@
|
||||||
\item $R$ is \nameref{ref:trichotomous}.
|
\item $R$ is \nameref{ref:trichotomous}.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
|
\lean{Mathlib/Init/Algebra/Classes}{IsStrictTotalOrder}
|
||||||
|
|
||||||
\begin{note}
|
\begin{note}
|
||||||
This definition does not agree with how Lean defines a linear order.
|
This definition does not agree with how Lean defines a linear order.
|
||||||
|
|
||||||
|
@ -284,8 +286,6 @@
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{note}
|
\end{note}
|
||||||
|
|
||||||
\lean{Mathlib/Init/Algebra/Classes}{IsStrictTotalOrder}
|
|
||||||
|
|
||||||
\section{\defined{Multiplication}}%
|
\section{\defined{Multiplication}}%
|
||||||
\hyperlabel{ref:multiplication}
|
\hyperlabel{ref:multiplication}
|
||||||
|
|
||||||
|
@ -462,14 +462,14 @@
|
||||||
|
|
||||||
For any set $a$, its \textbf{successor} is defined by $$a^+ = a \cup \{a\}.$$
|
For any set $a$, its \textbf{successor} is defined by $$a^+ = a \cup \{a\}.$$
|
||||||
|
|
||||||
|
\lean{Prelude}{Nat.succ}
|
||||||
|
|
||||||
\begin{note}
|
\begin{note}
|
||||||
The corresponding Lean reference refers to the `Nat.succ` constructor.
|
The corresponding Lean definition refers to the `Nat.succ` constructor.
|
||||||
This is not represented internally as a union of sets, but serves the same
|
This is not represented internally as a union of sets, but serves the same
|
||||||
role.
|
role.
|
||||||
\end{note}
|
\end{note}
|
||||||
|
|
||||||
\lean{Prelude}{Nat.succ}
|
|
||||||
|
|
||||||
\section{\defined{Subset Axioms}}%
|
\section{\defined{Subset Axioms}}%
|
||||||
\hyperlabel{ref:subset-axioms}
|
\hyperlabel{ref:subset-axioms}
|
||||||
|
|
||||||
|
@ -5763,13 +5763,13 @@
|
||||||
$\langle \omega, \sigma, 0 \rangle$ is a Peano system.
|
$\langle \omega, \sigma, 0 \rangle$ is a Peano system.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\code{Common/Set/Peano}{Peano.instSystemNatUnivSuccOfNatInstOfNatNat}
|
||||||
|
|
||||||
\begin{note}
|
\begin{note}
|
||||||
This theorem depends on \nameref{sub:theorem-4e} and
|
This theorem depends on \nameref{sub:theorem-4e} and
|
||||||
\nameref{sub:theorem-4f}.
|
\nameref{sub:theorem-4f}.
|
||||||
\end{note}
|
\end{note}
|
||||||
|
|
||||||
\code{Common/Set/Peano}{Peano.instSystemNatUnivSuccOfNatInstOfNatNat}
|
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
Note $\sigma$ is defined as $\sigma = \{\pair{n, n^+} \mid n \in \omega\}$.
|
Note $\sigma$ is defined as $\sigma = \{\pair{n, n^+} \mid n \in \omega\}$.
|
||||||
|
@ -6590,16 +6590,16 @@
|
||||||
For $m, n \in \omega$, $$m \cdot n = n \cdot m.$$
|
For $m, n \in \omega$, $$m \cdot n = n \cdot m.$$
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
\begin{note}
|
|
||||||
We prove commutativity before associativity, though Enderton orders these
|
|
||||||
two properties in the opposite direction.
|
|
||||||
\end{note}
|
|
||||||
|
|
||||||
\code{Bookshelf/Enderton/Set/Chapter\_4}
|
\code{Bookshelf/Enderton/Set/Chapter\_4}
|
||||||
{Enderton.Set.Chapter\_4.theorem\_4k\_5}
|
{Enderton.Set.Chapter\_4.theorem\_4k\_5}
|
||||||
|
|
||||||
\lean{Init/Data/Nat/Basic}{Nat.mul\_comm}
|
\lean{Init/Data/Nat/Basic}{Nat.mul\_comm}
|
||||||
|
|
||||||
|
\begin{note}
|
||||||
|
We prove commutativity before associativity, though Enderton orders these
|
||||||
|
two properties in the opposite direction.
|
||||||
|
\end{note}
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
Fix $n \in \omega$ and define
|
Fix $n \in \omega$ and define
|
||||||
|
@ -6747,12 +6747,12 @@
|
||||||
For any natural numbers $m$ and $n$, $$m \in n \iff m^+ \in n^+.$$
|
For any natural numbers $m$ and $n$, $$m \in n \iff m^+ \in n^+.$$
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
|
|
||||||
|
\lean{Std/Data/Nat/Lemmas}{Nat.succ\_lt\_succ\_iff}
|
||||||
|
|
||||||
\begin{note}
|
\begin{note}
|
||||||
Here I referred to Enderton's proof in the forward direction.
|
Here I referred to Enderton's proof in the forward direction.
|
||||||
\end{note}
|
\end{note}
|
||||||
|
|
||||||
\lean{Std/Data/Nat/Lemmas}{Nat.succ\_lt\_succ\_iff}
|
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
||||||
Let $m$ and $n$ be \nameref{ref:natural-number}s.
|
Let $m$ and $n$ be \nameref{ref:natural-number}s.
|
||||||
|
@ -7242,7 +7242,7 @@
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{%
|
\subsection{\pending{%
|
||||||
Well Ordering of \texorpdfstring{$\omega$}{Natural Numbers}}}%
|
Well Ordering of \texorpdfstring{$\omega$}{Natural Numbers}}}%
|
||||||
\hyperlabel{sub:well-ordering-natural-numbers}
|
\hyperlabel{sub:well-ordering-natural-numbers}
|
||||||
|
|
||||||
|
@ -7251,8 +7251,57 @@
|
||||||
Then there is some $m \in A$ such that $m \ineq n$ for all $n \in A$.
|
Then there is some $m \in A$ such that $m \ineq n$ for all $n \in A$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\lean{Mathlib/SetTheory/Ordinal/Basic}{WellOrder}
|
||||||
|
|
||||||
|
\begin{note}
|
||||||
|
This proof was written a few days after reading Enderton's proof as a means
|
||||||
|
of ensuring I remember the main arguments.
|
||||||
|
\end{note}
|
||||||
|
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
TODO
|
|
||||||
|
Let $A$ be a nonempty subset of $\omega$.
|
||||||
|
For the sake of contradiction, suppose $A$ does not have a least element.
|
||||||
|
It then suffices to prove that the complement of $A$ equals $\omega$.
|
||||||
|
If we do so, then $A = \emptyset$, a contradiction.
|
||||||
|
Define
|
||||||
|
\begin{equation}
|
||||||
|
\hyperlabel{sub:well-ordering-natural-numbers-eq1}
|
||||||
|
S = \{n \in \omega \mid (\forall m \in n) m \not\in A\}.
|
||||||
|
\end{equation}
|
||||||
|
We prove $S$ is an \nameref{ref:inductive-set} by showing that (i)
|
||||||
|
$0 \in S$ and (ii) if $n \in S$, then $n^+ \in S$.
|
||||||
|
Afterward we show that $\omega - A = \omega$, completing the proof.
|
||||||
|
|
||||||
|
\paragraph{(i)}%
|
||||||
|
\hyperlabel{par:well-ordering-natural-numbers-i}
|
||||||
|
|
||||||
|
It vacuously holds that $0 \in S$.
|
||||||
|
|
||||||
|
\paragraph{(ii)}%
|
||||||
|
\hyperlabel{par:well-ordering-natural-numbers-ii}
|
||||||
|
|
||||||
|
Suppose $n \in S$.
|
||||||
|
That is, for all $m \in n$, $m \in \omega - A$.
|
||||||
|
Let $p$ be an arbitrary element of $A$.
|
||||||
|
By the \nameref{sub:trichotomy-law-natural-numbers}, only one of the
|
||||||
|
following holds:
|
||||||
|
$$p \in n^+, \quad p = n^+, \quad n^+ \in p.$$
|
||||||
|
It cannot be that $p \in n^+$ since $p \in \omega - A$ by
|
||||||
|
\eqref{sub:well-ordering-natural-numbers-eq1}.
|
||||||
|
But then $n^+ = p$ or $n^+ \in p$, implying that $n^+$ is a least element
|
||||||
|
of $A$.
|
||||||
|
Since $A$ does not have a least element, it must be that $n^+ \not\in A$.
|
||||||
|
Hence $n^+ \in S$.
|
||||||
|
|
||||||
|
\paragraph{Conclusion}%
|
||||||
|
|
||||||
|
By \nameref{par:well-ordering-natural-numbers-i} and
|
||||||
|
\nameref{par:well-ordering-natural-numbers-ii}, $S$ is an inductive set.
|
||||||
|
Since $S \subseteq \omega$, \nameref{sub:theorem-4b} implies $S = \omega$.
|
||||||
|
But this immediately implies $\omega = \omega - A$ meaning $A$ is the
|
||||||
|
empty set.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{\sorry{Corollary 4Q}}%
|
\subsection{\sorry{Corollary 4Q}}%
|
||||||
|
|
Loading…
Reference in New Issue