diff --git a/Bookshelf/Enderton/Set.tex b/Bookshelf/Enderton/Set.tex index fbed7d7..b7a5ca5 100644 --- a/Bookshelf/Enderton/Set.tex +++ b/Bookshelf/Enderton/Set.tex @@ -213,6 +213,10 @@ and it is "closed under \nameref{ref:successor}", i.e. $$(\forall a \in A) a^+ \in A.$$ + \lean{Prelude}{Nat} + + \lean{Mathlib/Init/Set}{Set.univ} + \begin{note} Induction is baked into Lean's type system. In particular, the $\emptyset$ and "closed under successor" properties are @@ -220,10 +224,6 @@ respectively. \end{note} - \lean{Prelude}{Nat} - - \lean{Mathlib/Init/Set}{Set.univ} - \section{\defined{Infinity Axiom}}% \hyperlabel{ref:infinity-axiom} @@ -266,6 +266,8 @@ \item $R$ is \nameref{ref:trichotomous}. \end{enumerate} + \lean{Mathlib/Init/Algebra/Classes}{IsStrictTotalOrder} + \begin{note} This definition does not agree with how Lean defines a linear order. @@ -284,8 +286,6 @@ \end{enumerate} \end{note} - \lean{Mathlib/Init/Algebra/Classes}{IsStrictTotalOrder} - \section{\defined{Multiplication}}% \hyperlabel{ref:multiplication} @@ -462,14 +462,14 @@ For any set $a$, its \textbf{successor} is defined by $$a^+ = a \cup \{a\}.$$ + \lean{Prelude}{Nat.succ} + \begin{note} - The corresponding Lean reference refers to the `Nat.succ` constructor. + The corresponding Lean definition refers to the `Nat.succ` constructor. This is not represented internally as a union of sets, but serves the same role. \end{note} - \lean{Prelude}{Nat.succ} - \section{\defined{Subset Axioms}}% \hyperlabel{ref:subset-axioms} @@ -5763,13 +5763,13 @@ $\langle \omega, \sigma, 0 \rangle$ is a Peano system. \end{theorem} + \code{Common/Set/Peano}{Peano.instSystemNatUnivSuccOfNatInstOfNatNat} + \begin{note} This theorem depends on \nameref{sub:theorem-4e} and \nameref{sub:theorem-4f}. \end{note} - \code{Common/Set/Peano}{Peano.instSystemNatUnivSuccOfNatInstOfNatNat} - \begin{proof} Note $\sigma$ is defined as $\sigma = \{\pair{n, n^+} \mid n \in \omega\}$. @@ -6590,16 +6590,16 @@ For $m, n \in \omega$, $$m \cdot n = n \cdot m.$$ \end{theorem} - \begin{note} - We prove commutativity before associativity, though Enderton orders these - two properties in the opposite direction. - \end{note} - \code{Bookshelf/Enderton/Set/Chapter\_4} {Enderton.Set.Chapter\_4.theorem\_4k\_5} \lean{Init/Data/Nat/Basic}{Nat.mul\_comm} + \begin{note} + We prove commutativity before associativity, though Enderton orders these + two properties in the opposite direction. + \end{note} + \begin{proof} Fix $n \in \omega$ and define @@ -6747,12 +6747,12 @@ For any natural numbers $m$ and $n$, $$m \in n \iff m^+ \in n^+.$$ \end{lemma} + \lean{Std/Data/Nat/Lemmas}{Nat.succ\_lt\_succ\_iff} + \begin{note} Here I referred to Enderton's proof in the forward direction. \end{note} - \lean{Std/Data/Nat/Lemmas}{Nat.succ\_lt\_succ\_iff} - \begin{proof} Let $m$ and $n$ be \nameref{ref:natural-number}s. @@ -7242,7 +7242,7 @@ \end{proof} -\subsection{\sorry{% +\subsection{\pending{% Well Ordering of \texorpdfstring{$\omega$}{Natural Numbers}}}% \hyperlabel{sub:well-ordering-natural-numbers} @@ -7251,8 +7251,57 @@ Then there is some $m \in A$ such that $m \ineq n$ for all $n \in A$. \end{theorem} + \lean{Mathlib/SetTheory/Ordinal/Basic}{WellOrder} + + \begin{note} + This proof was written a few days after reading Enderton's proof as a means + of ensuring I remember the main arguments. + \end{note} + \begin{proof} - TODO + + Let $A$ be a nonempty subset of $\omega$. + For the sake of contradiction, suppose $A$ does not have a least element. + It then suffices to prove that the complement of $A$ equals $\omega$. + If we do so, then $A = \emptyset$, a contradiction. + Define + \begin{equation} + \hyperlabel{sub:well-ordering-natural-numbers-eq1} + S = \{n \in \omega \mid (\forall m \in n) m \not\in A\}. + \end{equation} + We prove $S$ is an \nameref{ref:inductive-set} by showing that (i) + $0 \in S$ and (ii) if $n \in S$, then $n^+ \in S$. + Afterward we show that $\omega - A = \omega$, completing the proof. + + \paragraph{(i)}% + \hyperlabel{par:well-ordering-natural-numbers-i} + + It vacuously holds that $0 \in S$. + + \paragraph{(ii)}% + \hyperlabel{par:well-ordering-natural-numbers-ii} + + Suppose $n \in S$. + That is, for all $m \in n$, $m \in \omega - A$. + Let $p$ be an arbitrary element of $A$. + By the \nameref{sub:trichotomy-law-natural-numbers}, only one of the + following holds: + $$p \in n^+, \quad p = n^+, \quad n^+ \in p.$$ + It cannot be that $p \in n^+$ since $p \in \omega - A$ by + \eqref{sub:well-ordering-natural-numbers-eq1}. + But then $n^+ = p$ or $n^+ \in p$, implying that $n^+$ is a least element + of $A$. + Since $A$ does not have a least element, it must be that $n^+ \not\in A$. + Hence $n^+ \in S$. + + \paragraph{Conclusion}% + + By \nameref{par:well-ordering-natural-numbers-i} and + \nameref{par:well-ordering-natural-numbers-ii}, $S$ is an inductive set. + Since $S \subseteq \omega$, \nameref{sub:theorem-4b} implies $S = \omega$. + But this immediately implies $\omega = \omega - A$ meaning $A$ is the + empty set. + \end{proof} \subsection{\sorry{Corollary 4Q}}%