bookshelf/one-variable-calculus/Apostol/Chapter_I_3.tex

59 lines
1.1 KiB
TeX
Raw Normal View History

2023-04-10 17:33:22 +00:00
\documentclass{article}
\input{../../common/preamble}
\begin{document}
\begin{xtheorem}{I.27}
Every nonempty set $S$ that is bounded below has a greatest lower bound;
that is, there is a real number $L$ such that $L = \inf{S}$.
\end{xtheorem}
\begin{proof}
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_isGLB}
\end{proof}
\begin{xtheorem}{I.29}
For every real $x$ there exists a positive integer $n$ such that $n > x$.
\end{xtheorem}
\begin{proof}
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_geq_self}
\end{proof}
\begin{xtheorem}{I.30}[Archimedean Property of the Reals]
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$.
\end{xtheorem}
\begin{proof}
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_mul_self_geq_of_pos}
\end{proof}
\begin{xtheorem}{I.31}
If three real numbers $a$, $x$, and $y$ satisfy the inequalities
$$a \leq x \leq a + \frac{y}{n}$$
for every integer $n \geq 1$, then $x = a$.
\end{xtheorem}
\begin{proof}
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.forall_pnat_leq_self_leq_frac_imp_eq}
\end{proof}
\end{document}