59 lines
1.1 KiB
TeX
59 lines
1.1 KiB
TeX
\documentclass{article}
|
|
|
|
\input{../../common/preamble}
|
|
|
|
\begin{document}
|
|
|
|
\begin{xtheorem}{I.27}
|
|
|
|
Every nonempty set $S$ that is bounded below has a greatest lower bound;
|
|
that is, there is a real number $L$ such that $L = \inf{S}$.
|
|
|
|
\end{xtheorem}
|
|
|
|
\begin{proof}
|
|
|
|
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_isGLB}
|
|
|
|
\end{proof}
|
|
|
|
\begin{xtheorem}{I.29}
|
|
|
|
For every real $x$ there exists a positive integer $n$ such that $n > x$.
|
|
|
|
\end{xtheorem}
|
|
|
|
\begin{proof}
|
|
|
|
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_geq_self}
|
|
|
|
\end{proof}
|
|
|
|
\begin{xtheorem}{I.30}[Archimedean Property of the Reals]
|
|
|
|
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$.
|
|
|
|
\end{xtheorem}
|
|
|
|
\begin{proof}
|
|
|
|
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_mul_self_geq_of_pos}
|
|
|
|
\end{proof}
|
|
|
|
\begin{xtheorem}{I.31}
|
|
|
|
If three real numbers $a$, $x$, and $y$ satisfy the inequalities
|
|
$$a \leq x \leq a + \frac{y}{n}$$
|
|
for every integer $n \geq 1$, then $x = a$.
|
|
|
|
\end{xtheorem}
|
|
|
|
\begin{proof}
|
|
|
|
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.forall_pnat_leq_self_leq_frac_imp_eq}
|
|
|
|
\end{proof}
|
|
|
|
\end{document}
|