I3.9 Apostol. LUB and GLB theorems.
parent
cac78666db
commit
cd3c98ee95
|
@ -1 +1 @@
|
|||
import Apostol.Chapter_I_3_10
|
||||
import Apostol.Chapter_I_3
|
||||
|
|
|
@ -0,0 +1,221 @@
|
|||
import Mathlib.Data.Real.Basic
|
||||
import Mathlib.Data.Set.Pointwise.Basic
|
||||
import Mathlib.Tactic.LibrarySearch
|
||||
|
||||
#check Archimedean
|
||||
#check Real.exists_isLUB
|
||||
|
||||
namespace Real
|
||||
|
||||
/--
|
||||
A property holds for the negation of elements in set `S` if and only if it also
|
||||
holds for the elements of the negation of `S`.
|
||||
-/
|
||||
lemma set_neg_prop_iff_neg_set_prop (S : Set ℝ) (p : ℝ → Prop)
|
||||
: (∀ y, y ∈ S → p (-y)) ↔ (∀ y, y ∈ -S → p y) := by
|
||||
apply Iff.intro
|
||||
· intro h y hy
|
||||
rw [← neg_neg y, Set.neg_mem_neg] at hy
|
||||
have := h (-y) hy
|
||||
simp at this
|
||||
exact this
|
||||
· intro h y hy
|
||||
rw [← Set.neg_mem_neg] at hy
|
||||
exact h (-y) hy
|
||||
|
||||
/--
|
||||
The upper bounds of the negation of a set is the negation of the lower bounds of
|
||||
the set.
|
||||
-/
|
||||
lemma upper_bounds_neg_eq_neg_lower_bounds (S : Set ℝ)
|
||||
: upperBounds (-S) = -lowerBounds S := by
|
||||
suffices (∀ x, x ∈ upperBounds (-S) ↔ x ∈ -(lowerBounds S)) from
|
||||
Set.ext this
|
||||
intro x
|
||||
apply Iff.intro
|
||||
· intro hx
|
||||
unfold lowerBounds
|
||||
show -x ∈ { x | ∀ ⦃a : ℝ⦄, a ∈ S → x ≤ a }
|
||||
show ∀ ⦃a : ℝ⦄, a ∈ S → (-x) ≤ a
|
||||
intro a ha; rw [neg_le]; revert ha a
|
||||
rw [set_neg_prop_iff_neg_set_prop S (fun a => a ≤ x)]
|
||||
exact hx
|
||||
· intro hx
|
||||
unfold upperBounds
|
||||
show ∀ ⦃a : ℝ⦄, a ∈ -S → a ≤ x
|
||||
rw [← set_neg_prop_iff_neg_set_prop S (fun a => a ≤ x)]
|
||||
intro y hy; rw [neg_le]; revert hy y
|
||||
exact hx
|
||||
|
||||
/--
|
||||
The negation of the upper bounds of a set is the lower bounds of the negation of
|
||||
the set.
|
||||
-/
|
||||
lemma neg_upper_bounds_eq_lower_bounds_neg (S : Set ℝ)
|
||||
: -upperBounds S = lowerBounds (-S) := by
|
||||
suffices (∀ x, x ∈ -upperBounds S ↔ x ∈ lowerBounds (-S)) from
|
||||
Set.ext this
|
||||
intro x
|
||||
apply Iff.intro
|
||||
· intro hx
|
||||
unfold lowerBounds
|
||||
show ∀ ⦃a : ℝ⦄, a ∈ -S → x ≤ a
|
||||
rw [← set_neg_prop_iff_neg_set_prop S (fun a => x ≤ a)]
|
||||
intro y hy; rw [le_neg]; revert hy y
|
||||
exact hx
|
||||
· intro hx
|
||||
unfold upperBounds
|
||||
show -x ∈ { x | ∀ ⦃a : ℝ⦄, a ∈ S → a ≤ x }
|
||||
show ∀ ⦃a : ℝ⦄, a ∈ S → a ≤ (-x)
|
||||
intro a ha; rw [le_neg]; revert ha a
|
||||
rw [set_neg_prop_iff_neg_set_prop S (fun a => x ≤ a)]
|
||||
exact hx
|
||||
|
||||
/--
|
||||
An element `x` is the least element of the negation of a set if and only if `-x`
|
||||
if the greatest element of the set.
|
||||
-/
|
||||
lemma is_least_neg_set_eq_is_greatest_set_neq (S : Set ℝ)
|
||||
: IsLeast (-S) x = IsGreatest S (-x) := by
|
||||
unfold IsLeast IsGreatest
|
||||
rw [← neg_upper_bounds_eq_lower_bounds_neg S]
|
||||
rfl
|
||||
|
||||
/--
|
||||
At least with respect to `ℝ`, `x` is the least upper bound of set `-S` if and
|
||||
only if `-x` is the greatest lower bound of `S`.
|
||||
-/
|
||||
theorem is_lub_neg_set_iff_is_glb_set_neg (S : Set ℝ)
|
||||
: IsLUB (-S) x = IsGLB S (-x) :=
|
||||
calc IsLUB (-S) x
|
||||
_ = IsLeast (upperBounds (-S)) x := rfl
|
||||
_ = IsLeast (-lowerBounds S) x := by rw [upper_bounds_neg_eq_neg_lower_bounds S]
|
||||
_ = IsGreatest (lowerBounds S) (-x) := by rw [is_least_neg_set_eq_is_greatest_set_neq]
|
||||
_ = IsGLB S (-x) := rfl
|
||||
|
||||
/--
|
||||
Theorem I.27
|
||||
|
||||
Every nonempty set `S` that is bounded below has a greatest lower bound; that
|
||||
is, there is a real number `L` such that `L = inf S`.
|
||||
-/
|
||||
theorem exists_isGLB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddBelow S)
|
||||
: ∃ x, IsGLB S x := by
|
||||
-- First we show the negation of a nonempty set bounded below is a nonempty
|
||||
-- set bounded above. In that case, we can then apply the completeness axiom
|
||||
-- to argue the existence of a supremum.
|
||||
have hne' : (-S).Nonempty := Set.nonempty_neg.mpr hne
|
||||
have hbdd' : ∃ x, ∀ (y : ℝ), y ∈ -S → y ≤ x := by
|
||||
rw [bddBelow_def] at hbdd
|
||||
let ⟨lb, lbp⟩ := hbdd
|
||||
refine ⟨-lb, ?_⟩
|
||||
rw [← set_neg_prop_iff_neg_set_prop S (fun y => y ≤ -lb)]
|
||||
intro y hy
|
||||
exact neg_le_neg (lbp y hy)
|
||||
rw [←bddAbove_def] at hbdd'
|
||||
-- Once we have found a supremum for `-S`, we argue the negation of this value
|
||||
-- is the same as the infimum of `S`.
|
||||
let ⟨ub, ubp⟩ := exists_isLUB (-S) hne' hbdd'
|
||||
exact ⟨-ub, (is_lub_neg_set_iff_is_glb_set_neg S).mp ubp⟩
|
||||
|
||||
/--
|
||||
Every real should be less than or equal to the absolute value of its ceiling.
|
||||
-/
|
||||
lemma leq_nat_abs_ceil_self (x : ℝ) : x ≤ Int.natAbs ⌈x⌉ := by
|
||||
by_cases h : x ≥ 0
|
||||
· let k : ℤ := ⌈x⌉
|
||||
unfold Int.natAbs
|
||||
have k' : k = ⌈x⌉ := rfl
|
||||
rw [←k']
|
||||
have _ : k ≥ 0 := by -- Hint for match below
|
||||
rw [k', ge_iff_le]
|
||||
exact Int.ceil_nonneg (ge_iff_le.mp h)
|
||||
match k with
|
||||
| Int.ofNat m => calc x
|
||||
_ ≤ ⌈x⌉ := Int.le_ceil x
|
||||
_ = Int.ofNat m := by rw [←k']
|
||||
· have h' : ((Int.natAbs ⌈x⌉) : ℝ) ≥ 0 := by simp
|
||||
calc x
|
||||
_ ≤ 0 := le_of_lt (lt_of_not_le h)
|
||||
_ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h'
|
||||
|
||||
/--
|
||||
Theorem I.29
|
||||
|
||||
For every real `x` there exists a positive integer `n` such that `n > x`.
|
||||
-/
|
||||
theorem exists_pnat_geq_self (x : ℝ) : ∃ n : ℕ+, ↑n > x := by
|
||||
let x' : ℕ+ := ⟨Int.natAbs ⌈x⌉ + 1, by simp⟩
|
||||
have h : x < x' := calc x
|
||||
_ ≤ Int.natAbs ⌈x⌉ := leq_nat_abs_ceil_self x
|
||||
_ < ↑↑(Int.natAbs ⌈x⌉ + 1) := by simp
|
||||
_ = x' := rfl
|
||||
exact ⟨x', h⟩
|
||||
|
||||
/--
|
||||
Theorem I.30
|
||||
|
||||
If `x > 0` and if `y` is an arbitrary real number, there exists a positive
|
||||
integer `n` such that `nx > y`.
|
||||
|
||||
This is known as the *Archimedean Property of the Reals*.
|
||||
-/
|
||||
theorem exists_pnat_mul_self_geq_of_pos {x y : ℝ}
|
||||
: x > 0 → ∃ n : ℕ+, n * x > y := by
|
||||
intro hx
|
||||
let ⟨n, p⟩ := exists_pnat_geq_self (y / x)
|
||||
have p' := mul_lt_mul_of_pos_right p hx
|
||||
rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p'
|
||||
exact ⟨n, p'⟩
|
||||
|
||||
/--
|
||||
Theorem I.31
|
||||
|
||||
If three real numbers `a`, `x`, and `y` satisfy the inequalities
|
||||
`a ≤ x ≤ a + y / n` for every integer `n ≥ 1`, then `x = a`.
|
||||
-/
|
||||
theorem forall_pnat_leq_self_leq_frac_imp_eq {x y a : ℝ}
|
||||
: (∀ n : ℕ+, a ≤ x ∧ x ≤ a + (y / n)) → x = a := by
|
||||
intro h
|
||||
match @trichotomous ℝ LT.lt _ x a with
|
||||
| -- x = a
|
||||
Or.inr (Or.inl r) => exact r
|
||||
| -- x < a
|
||||
Or.inl r =>
|
||||
have z : a < a := lt_of_le_of_lt (h 1).left r
|
||||
simp at z
|
||||
| -- x > a
|
||||
Or.inr (Or.inr r) =>
|
||||
let ⟨c, hc⟩ := exists_pos_add_of_lt' r
|
||||
let ⟨n, hn⟩ := @exists_pnat_mul_self_geq_of_pos c y hc.left
|
||||
have hn := mul_lt_mul_of_pos_left hn $
|
||||
have hp : 0 < (↑↑n : ℝ) := by simp
|
||||
show 0 < ((↑↑n)⁻¹ : ℝ) from inv_pos.mpr hp
|
||||
rw [inv_mul_eq_div, ←mul_assoc, mul_comm (n⁻¹ : ℝ), ←one_div, mul_one_div] at hn
|
||||
simp at hn
|
||||
have hn := add_lt_add_left hn a
|
||||
have := calc a + y / ↑↑n
|
||||
_ < a + c := hn
|
||||
_ = x := hc.right
|
||||
_ ≤ a + y / ↑↑n := (h n).right
|
||||
simp at this
|
||||
|
||||
/--
|
||||
Theorem I.32a
|
||||
|
||||
Let `h` be a given positive number and let `S` be a set of real numbers. If `S`
|
||||
has a supremum, then for some `x` in `S` we have `x > sup S - h`.
|
||||
-/
|
||||
theorem arb_close_to_sup (S : Set ℝ) (s h : ℝ) (hp : h > 0)
|
||||
: IsLUB S s → ∃ x : S, x > s - h := sorry
|
||||
|
||||
/--
|
||||
Theorem I.32b
|
||||
|
||||
Let `h` be a given positive number and let `S` be a set of real numbers. If `S`
|
||||
has an infimum, then for some `x` in `S` we have `x < inf S + h`.
|
||||
-/
|
||||
theorem arb_close_to_inf (S : Set ℝ) (s h : ℝ) (hp : h > 0)
|
||||
: IsGLB S s → ∃ x : S, x < s + h := sorry
|
||||
|
||||
end Real
|
|
@ -0,0 +1,58 @@
|
|||
\documentclass{article}
|
||||
|
||||
\input{../../common/preamble}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{xtheorem}{I.27}
|
||||
|
||||
Every nonempty set $S$ that is bounded below has a greatest lower bound;
|
||||
that is, there is a real number $L$ such that $L = \inf{S}$.
|
||||
|
||||
\end{xtheorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_isGLB}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{I.29}
|
||||
|
||||
For every real $x$ there exists a positive integer $n$ such that $n > x$.
|
||||
|
||||
\end{xtheorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_geq_self}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{I.30}[Archimedean Property of the Reals]
|
||||
|
||||
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$.
|
||||
|
||||
\end{xtheorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.exists_pnat_mul_self_geq_of_pos}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{I.31}
|
||||
|
||||
If three real numbers $a$, $x$, and $y$ satisfy the inequalities
|
||||
$$a \leq x \leq a + \frac{y}{n}$$
|
||||
for every integer $n \geq 1$, then $x = a$.
|
||||
|
||||
\end{xtheorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3.lean}{Apostol.Chapter_I_3.Real.forall_pnat_leq_self_leq_frac_imp_eq}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
|
@ -1,90 +0,0 @@
|
|||
import Mathlib.Data.PNat.Basic
|
||||
import Mathlib.Data.Real.Basic
|
||||
|
||||
#check Archimedean
|
||||
|
||||
namespace Real
|
||||
|
||||
/--
|
||||
Every real should be less than or equal to the absolute value of its ceiling.
|
||||
-/
|
||||
lemma leq_nat_abs_ceil_self (x : ℝ) : x ≤ Int.natAbs ⌈x⌉ := by
|
||||
by_cases h : x ≥ 0
|
||||
· let k : ℤ := ⌈x⌉
|
||||
unfold Int.natAbs
|
||||
have k' : k = ⌈x⌉ := rfl
|
||||
rw [←k']
|
||||
have _ : k ≥ 0 := by -- Hint for match below
|
||||
rw [k', ge_iff_le]
|
||||
exact Int.ceil_nonneg (ge_iff_le.mp h)
|
||||
match k with
|
||||
| Int.ofNat m => calc x
|
||||
_ ≤ ⌈x⌉ := Int.le_ceil x
|
||||
_ = Int.ofNat m := by rw [←k']
|
||||
· have h' : ((Int.natAbs ⌈x⌉) : ℝ) ≥ 0 := by simp
|
||||
calc x
|
||||
_ ≤ 0 := le_of_lt (lt_of_not_le h)
|
||||
_ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h'
|
||||
|
||||
/--
|
||||
Theorem I.29
|
||||
|
||||
For every real `x` there exists a positive integer `n` such that `n > x`.
|
||||
-/
|
||||
theorem exists_pnat_geq_self (x : ℝ) : ∃ n : ℕ+, ↑n > x := by
|
||||
let x' : ℕ+ := ⟨Int.natAbs ⌈x⌉ + 1, by simp⟩
|
||||
have h : x < x' := calc x
|
||||
_ ≤ Int.natAbs ⌈x⌉ := leq_nat_abs_ceil_self x
|
||||
_ < ↑↑(Int.natAbs ⌈x⌉ + 1) := by simp
|
||||
_ = x' := rfl
|
||||
exact ⟨x', h⟩
|
||||
|
||||
/--
|
||||
Theorem I.30
|
||||
|
||||
If `x > 0` and if `y` is an arbitrary real number, there exists a positive
|
||||
integer `n` such that `nx > y`.
|
||||
|
||||
This is known as the *Archimedean Property of the Reals*.
|
||||
-/
|
||||
theorem exists_pnat_mul_self_geq_of_pos {x y : ℝ}
|
||||
: x > 0 → ∃ n : ℕ+, n * x > y := by
|
||||
intro hx
|
||||
let ⟨n, p⟩ := exists_pnat_geq_self (y / x)
|
||||
have p' := mul_lt_mul_of_pos_right p hx
|
||||
rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p'
|
||||
exact ⟨n, p'⟩
|
||||
|
||||
/--
|
||||
Theorem I.31
|
||||
|
||||
If three real numbers `a`, `x`, and `y` satisfy the inequalities
|
||||
`a ≤ x ≤ a + y / n` for every integer `n ≥ 1`, then `x = a`.
|
||||
-/
|
||||
theorem forall_pnat_leq_self_leq_frac_iff_eq {x y a : ℝ}
|
||||
: (∀ n : ℕ+, a ≤ x ∧ x ≤ a + (y / n)) → x = a := by
|
||||
intro h
|
||||
match @trichotomous ℝ LT.lt _ x a with
|
||||
| -- x = a
|
||||
Or.inr (Or.inl r) => exact r
|
||||
| -- x < a
|
||||
Or.inl r =>
|
||||
have z : a < a := lt_of_le_of_lt (h 1).left r
|
||||
simp at z
|
||||
| -- x > a
|
||||
Or.inr (Or.inr r) =>
|
||||
let ⟨c, hc⟩ := exists_pos_add_of_lt' r
|
||||
let ⟨n, hn⟩ := @exists_pnat_mul_self_geq_of_pos c y hc.left
|
||||
have hn := mul_lt_mul_of_pos_left hn $
|
||||
have hp : 0 < (↑↑n : ℝ) := by simp
|
||||
show 0 < ((↑↑n)⁻¹ : ℝ) from inv_pos.mpr hp
|
||||
rw [inv_mul_eq_div, ←mul_assoc, mul_comm (n⁻¹ : ℝ), ←one_div, mul_one_div] at hn
|
||||
simp at hn
|
||||
have hn := add_lt_add_left hn a
|
||||
have := calc a + y / ↑↑n
|
||||
_ < a + c := hn
|
||||
_ = x := hc.right
|
||||
_ ≤ a + y / ↑↑n := (h n).right
|
||||
simp at this
|
||||
|
||||
end Real
|
|
@ -1,45 +0,0 @@
|
|||
\documentclass{article}
|
||||
|
||||
\input{../../common/preamble}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{xtheorem}{1.29}
|
||||
|
||||
For every real $x$ there exists a positive integer $n$ such that $n > x$.
|
||||
|
||||
\end{xtheorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3_10.lean}{Apostol.Chapter_I_3_10.Real.exists_pnat_geq_self}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{1.30}[Archimedean Property of the Reals]
|
||||
|
||||
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive integer $n$ such that $nx > y$.
|
||||
|
||||
\end{xtheorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3_10.lean}{Apostol.Chapter_I_3_10.Real.exists_pnat_mul_self_geq_of_pos}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{xtheorem}{1.31}
|
||||
|
||||
If three real numbers $a$, $x$, and $y$ satisfy the inequalities
|
||||
$$a \leq x \leq a + \frac{y}{n}$$
|
||||
for every integer $n \geq 1$, then $x = a$.
|
||||
|
||||
\end{xtheorem}
|
||||
|
||||
\begin{proof}
|
||||
|
||||
\href{Chapter_I_3_10.lean}{Apostol.Chapter_I_3_10.Real.forall_pnat_leq_self_leq_frac_iff_eq}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue