notebook/notes/logic/propositional.md

305 lines
9.2 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
title: Propositional Logic
TARGET DECK: Obsidian::STEM
FILE TAGS: logic::0-order
tags:
- logic
- 0-order
---
## Overview
%%ANKI
Basic
Who is the author of "The Science of Programming"?
Back: David Gries
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861286-->
END%%
%%ANKI
Basic
What are the constant propositions?
Back: $T$ and $F$
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861289-->
END%%
%%ANKI
Basic
What are the five propositional logical operators?
Back: $\neg$, $\land$, $\lor$, $\Rightarrow$, and $\Leftrightarrow$
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861291-->
END%%
%%ANKI
Cloze
Gries replaces logical operator {$\Leftrightarrow$} in favor of {$=$}.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861295-->
END%%
%%ANKI
Basic
How does Lean define propositional equality?
Back: Expressions `a` and `b` are propositionally equal iff `a = b` is true.
Reference: Avigad, Jeremy. Theorem Proving in Lean, n.d.
Tags: lean
<!--ID: 1706994861298-->
END%%
%%ANKI
Basic
How does Lean define `propext`?
Back:
```lean
axiom propext {a b : Prop} : (a ↔ b) → (a = b)
```
Reference: Avigad, Jeremy. Theorem Proving in Lean, n.d.
Tags: lean
<!--ID: 1706994861300-->
END%%
%%ANKI
Basic
What Lean theorem justifies Gries choice of $=$ over $\Leftrightarrow$?
Back: `propext`
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: lean
<!--ID: 1706994861302-->
END%%
%%ANKI
Basic
What name is given to $\land$ operands?
Back: Conjuncts
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861304-->
END%%
%%ANKI
Basic
What name is given to $\lor$ operands?
Back: Disjuncts
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861306-->
END%%
%%ANKI
Basic
What name is given to operand $a$ in $a \Rightarrow b$?
Back: The antecedent
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861308-->
END%%
%%ANKI
Basic
What name is given to operand $b$ in $a \Rightarrow b$?
Back: The consequent
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861310-->
END%%
%%ANKI
Basic
What does the evaluation model of propositional logic refer to?
Back: An interpretation of propositional logic that associates values to identifiers.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861312-->
END%%
%%ANKI
Basic
Evaluation model. What is a state?
Back: A function mapping identifiers to values.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861314-->
END%%
%%ANKI
Basic
What is necessary to determine if a proposition is well-defined?
Back: A state to evaluate against.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861316-->
END%%
%%ANKI
Basic
Is $(b \land c)$ well-defined in $\{(b, T), (c, F)\}$?
Back: Yes
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861318-->
END%%
%%ANKI
Basic
Is $(b \lor d)$ well-defined in $\{(b, T), (c, F)\}$?
Back: No
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861320-->
END%%
%%ANKI
Basic
Evaluation model. What does it mean for a proposition to be a tautology?
Back: A proposition is true in every state it is well-defined in.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861323-->
END%%
%%ANKI
Basic
What C operator corresponds to $\neg$?
Back: `!`
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
<!--ID: 1706994861325-->
END%%
%%ANKI
Basic
What C operator corresponds to $\land$?
Back: There isn't one.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
<!--ID: 1706994861327-->
END%%
%%ANKI
Basic
What C operator corresponds to $\lor$?
Back: There isn't one.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
<!--ID: 1706994861329-->
END%%
%%ANKI
Basic
What C operator corresponds to $\Rightarrow$?
Back: There isn't one.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
<!--ID: 1706994861331-->
END%%
%%ANKI
Basic
What C operator corresponds to $\Leftrightarrow$?
Back: `=`
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
<!--ID: 1706994861333-->
END%%
%%ANKI
Basic
Evaluation model. What does a proposition *represent*?
Back: The set of states in which it is true.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861335-->
END%%
%%ANKI
Basic
Evaluation model. What proposition represents states $\{(b, T)\}$ and $\{(c, F)\}$?
Back: $b \lor \neg c$
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861337-->
END%%
%%ANKI
Basic
Evaluation model. What set of states does $a \land b$ represent?
Back: The set containing just state $\{(a, T), (b, T)\}$.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861339-->
END%%
%%ANKI
Basic
Evaluation model. What is sloppy about phrase "the states in $b \lor \neg c$"?
Back: $b \lor \neg c$ is not a set.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861341-->
END%%
%%ANKI
Basic
When is $p$ stronger than $q$?
Back: When $p \Rightarrow q$.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861343-->
END%%
%%ANKI
Basic
When is $p$ weaker than $q$?
Back: When $q \Rightarrow p$.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861346-->
END%%
%%ANKI
Basic
What is the weakest proposition?
Back: $T$
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861348-->
END%%
%%ANKI
Basic
What set of states does $T$ represent?
Back: The set of all states.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861350-->
END%%
%%ANKI
Basic
What is the strongest proposition?
Back: $F$
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861352-->
END%%
%%ANKI
Basic
What set of states does $F$ represent?
Back: The set of no states.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861354-->
END%%
%%ANKI
Basic
Evaluation model. Why is $b \land c$ stronger than $b \lor c$?
Back: The former represents a subset of the states the latter represents.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861356-->
END%%
%%ANKI
Basic
How is $\Rightarrow$ written in terms of other logical operators?
Back: $p \Rightarrow q$ is equivalent to $\neg p \lor q$.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861358-->
END%%
%%ANKI
Basic
How is $\Leftrightarrow$ written in terms of other logical operators?
Back: $p \Leftrightarrow q$ is equivalent to $(p \Rightarrow q) \land (q \Rightarrow p)$.
Reference: Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861360-->
END%%
## References
* Avigad, Jeremy. Theorem Proving in Lean, n.d.
* Gries, David. _The Science of Programming_. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.