3.2 KiB
title | TARGET DECK | FILE TAGS | tags | |
---|---|---|---|---|
Binary Search | Obsidian::STEM | algorithm |
|
Overview
Property | Value |
---|---|
Best Case | O(1) |
Worst Case | O(\lg{n}) |
Aux. Memory | O(1) |
%%ANKI Basic What precondition must the input of binary search satisfy? Back: It must already be sorted. Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI
Basic
What is the best case running time of binary search?
Back: \Omega(1)
Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI Basic What input does binary search perform best on? Back: One in which the value being searched for is already in the middle. Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI
Basic
What is the worst case running time of binary search?
Back: O(\lg{n})
Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI Basic What input does binary search perform worst on? Back: One in which the value does not exist. Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI Basic What is the typical output of binary search? Back: The index of the element in the array being searched for, if found. Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
A recursive solution looks as follows:
static int aux(const int needle, const int i, const int j, int *A) {
if (i > j) {
return -1;
}
int mid = (i + j) / 2;
if (A[mid] == needle) {
return mid;
} else if (A[mid] < needle) {
return aux(needle, mid + 1, j, A);
} else {
return aux(needle, i, mid - 1, A);
}
}
int binary_search(const int needle, const int n, int A[static n]) {
return aux(needle, 0, n - 1, A);
}
We can also write this iteratively:
int binary_search(const int needle, const int n, int A[static n]) {
int i = 0;
int j = n - 1;
while (i <= j) {
int mid = (i + j) / 2;
if (A[mid] == needle) {
return mid;
} else if (A[mid] < needle) {
i = mid + 1;
} else {
j = mid - 1;
}
}
return -1;
}
%%ANKI Basic In binary search, when could using floor for midpoint calculations yield different answers than ceiling? Back: When there exist duplicate members. Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI
Basic
In binary search, what ensures left pointer L
and right pointers R
eventually satisfy L > R
?
Back: The found midpoint is always excluded from the next binary search invocation.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
References
- Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).