3.4 KiB
title | TARGET DECK | FILE TAGS | tags | |
---|---|---|---|---|
Binary Search | Obsidian::STEM | algorithm |
|
Overview
Property | Value |
---|---|
Best Case | O(1) |
Worst Case | O(\lg{n}) |
Aux. Memory | O(1) |
%%ANKI
Basic
What precondition must the input of BINARY_SEARCH
satisfy?
Back: It must already be sorted.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the best case running time of BINARY_SEARCH
?
Back: \Omega(1)
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What input does BINARY_SEARCH
perform best on?
Back: One in which the value being searched for is already in the middle.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the worst case running time of BINARY_SEARCH
?
Back: O(\lg{n})
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What input does BINARY_SEARCH
perform worst on?
Back: One in which the value does not exist.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the typical output of BINARY_SEARCH
?
Back: The index of the element in the array being searched for, if found.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
A recursive solution looks as follows:
static int aux(const int needle, const int i, const int j, int *A) {
if (i > j) {
return -1;
}
int mid = (i + j) / 2;
if (A[mid] == needle) {
return mid;
} else if (A[mid] < needle) {
return aux(needle, mid + 1, j, A);
} else {
return aux(needle, i, mid - 1, A);
}
}
int binary_search(const int needle, const int n, int A[static n]) {
return aux(needle, 0, n - 1, A);
}
We can also write this iteratively:
int binary_search(const int needle, const int n, int A[static n]) {
int i = 0;
int j = n - 1;
while (i <= j) {
int mid = (i + j) / 2;
if (A[mid] == needle) {
return mid;
} else if (A[mid] < needle) {
i = mid + 1;
} else {
j = mid - 1;
}
}
return -1;
}
%%ANKI
Basic
In BINARY_SEARCH
, when could using floor for midpoint calculations yield different answers than ceiling?
Back: When there exist duplicate members.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
In BINARY_SEARCH
, what ensures left pointer L
and right pointers R
eventually satisfy L > R
?
Back: The found midpoint is always excluded from the next BINARY_SEARCH
invocation.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
Bibliography
- Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).