100 lines
3.2 KiB
Markdown
100 lines
3.2 KiB
Markdown
---
|
|
title: Arrays
|
|
TARGET DECK: Obsidian::STEM
|
|
FILE TAGS: data_structure::array
|
|
tags:
|
|
- array
|
|
- data_structure
|
|
---
|
|
|
|
## Overview
|
|
|
|
%%ANKI
|
|
Basic
|
|
What does it mean to store a matrix in row-major order?
|
|
Back: Entries in the same matrix rows are adjacent to each other in memory.
|
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
<!--ID: 1715460959164-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What does it mean to store a matrix in column-major order?
|
|
Back: Entries in the same matrix columns are adjacent to each other in memory.
|
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
<!--ID: 1715460973182-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
How is the following matrix stored as a one-dimensional array in row-major order?
|
|
$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
|
|
Back:
|
|
![[array-1d-row-major.png]]
|
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
<!--ID: 1715460959175-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
How is the following matrix stored as a one-dimensional array in column-major order?
|
|
$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
|
|
Back:
|
|
![[array-1d-col-major.png]]
|
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
<!--ID: 1715460959179-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
How is the following matrix stored as an array of arrays in row-major order?
|
|
$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
|
|
Back:
|
|
![[array-multi-row-major.png]]
|
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
<!--ID: 1715460959183-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
How is the following matrix stored as an array of arrays in column-major order?
|
|
$$M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
|
|
Back:
|
|
![[array-multi-col-major.png]]
|
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
<!--ID: 1715460959188-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Cloze
|
|
The {head} of an array refers to {its first element}.
|
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
<!--ID: 1715534735208-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Cloze
|
|
The {tail} of an array refers to {all but its first element}.
|
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
<!--ID: 1715534735211-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What is the runtime of prepending an element to an array (assuming capacity)?
|
|
Back: $O(n)$
|
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
<!--ID: 1715534735214-->
|
|
END%%
|
|
|
|
%%ANKI
|
|
Basic
|
|
What is the runtime of finding the $k$th element of an array?
|
|
Back: $O(1)$
|
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
|
<!--ID: 1715534735217-->
|
|
END%%
|
|
|
|
## Bibliography
|
|
|
|
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). |