notebook/notes/programming/assertions.md

130 lines
4.3 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

---
title: Assertions
TARGET DECK: Obsidian::STEM
FILE TAGS: programming::assertions
tags:
- assertions
- programming
---
## Overview
Define $\{Q\}\; S\; \{R\}$ as the predicate:
> If execution of $S$ is begun in a state satisfying $Q$, then it is guaranteed to terminate in a finite amount of time in a state satisfying $R$.
%%ANKI
Basic
*What* is $Q$ in predicate $\{Q\}\; S\; \{R\}$?
Back: A predicate.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640219-->
END%%
%%ANKI
Basic
What name is given to $Q$ in $\{Q\}\; S\; \{R\}$?
Back: The precondition of $S$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640222-->
END%%
%%ANKI
Basic
*What* is $R$ in predicate $\{Q\}\; S\; \{R\}$?
Back: A predicate.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640224-->
END%%
%%ANKI
Basic
What name is given to $R$ in $\{Q\}\; S\; \{R\}$?
Back: The postcondition of $S$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640226-->
END%%
%%ANKI
Basic
*What* is $S$ in predicate $\{Q\}\; S\; \{R\}$?
Back: A program (a sequence of statements).
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640227-->
END%%
%%ANKI
Basic
What is the antecedent of $\{Q\}\; S\; \{R\}$ in English?
Back: $S$ is executed in a state satisfying $Q$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640229-->
END%%
%%ANKI
Basic
What is the consequent of $\{Q\}\; S\; \{R\}$ in English?
Back: $S$ terminates in a finite amount of time in a state satisfying $R$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640231-->
END%%
%%ANKI
Basic
How is $\{Q\}\; S\; \{R\}$ defined?
Back: If $S$ is executed in a state satisfying $Q$, it terminates in a finite amount of time in a state satisfying $R$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640232-->
END%%
%%ANKI
Basic
How is $\{x = X \land y = Y\}\; swap\; \{x = Y \land y = X\}$ rewritten without free identifiers?
Back: $\forall x, y, X, Y, \{x = X \land y = Y\}\; swap\; \{x = Y \land y = X\}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640234-->
END%%
%%ANKI
Basic
What name is given to $X$ in e.g. $\{x = X\}\; S\; \{y = Y\}$?
Back: The initial value of $x$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640235-->
END%%
%%ANKI
Basic
How is $\{Q\}\; S\; \{R\}$ augmented so that $x$ has initial value $X$?
Back: $\{Q \land x = X\}\; S\; \{R\}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640237-->
END%%
%%ANKI
Basic
What name is given to $Y$ in e.g. $\{x = X\}\; S\; \{y = Y\}$?
Back: The final value of $y$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640238-->
END%%
%%ANKI
Basic
How is $\{Q\}\; S\; \{R\}$ augmented so that $y$ has final value $X$?
Back: $\{Q\}\; S\; \{R \land y = X\}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640240-->
END%%
%%ANKI
Basic
How is $\{Q\}\; S\; \{R\}$ augmented so that $y$ has initial value $X$?
Back: $\{Q \land y = X\}\; S\; \{R\}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714420640241-->
END%%
## Bibliography
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.