notebook/notes/formal-system/logical-system/pred-logic.md

363 lines
13 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

---
title: Predicate Logic
TARGET DECK: Obsidian::STEM
FILE TAGS: formal-system::predicate
tags:
- logic
- predicate
---
## Overview
**Predicate logic** is a logical system that uses quantified variables over non-logical objects. A **predicate** is a sentence with some number of free variables. A predicate with free variables "plugged in" is a [[prop-logic|proposition]].
%%ANKI
Cloze
{Predicate} logic is also known as {first}-order logic.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715897257076-->
END%%
%%ANKI
Basic
What is a predicate?
Back: A sentence with some number of free variables.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715897257082-->
END%%
%%ANKI
Basic
What distinguishes a predicate from a proposition?
Back: A proposition does not contain free variables.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272110-->
END%%
%%ANKI
Basic
How are propositions defined in terms of predicates?
Back: A proposition is a predicate with $0$ free variables.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272115-->
END%%
%%ANKI
Basic
Why is "$3 + x = 12$" *not* a proposition?
Back: Because $x$ is a variable.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272121-->
END%%
## Quantification
A **quantifier** refers to an operator that specifies how many members of a set satisfy some formula. The most common quantifiers are $\exists$ and $\forall$, though others (such as the counting quantifier) are also used.
%%ANKI
Basic
What are the most common first-order logic quantifiers?
Back: $\exists$ and $\forall$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707674796763-->
END%%
%%ANKI
Basic
What term refers to operators like $\exists$ and $\forall$?
Back: Quantifiers.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707674796766-->
END%%
### Existentials
**Existential quantification** ($\exists$) asserts the existence of at least one member in a set satisfying a property.
%%ANKI
Basic
What symbol denotes existential quantification?
Back: $\exists$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494819964-->
END%%
%%ANKI
Basic
How many members in the domain of discourse must satisfy a property in existential quantification?
Back: At least one.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494819967-->
END%%
%%ANKI
Basic
$\exists x : S, P(x)$ is an abbreviation for what?
Back: $\exists x, x \in S \land P(x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494819968-->
END%%
%%ANKI
Basic
What term refers to $S$ in $\exists x : S, P(x)$?
Back: The domain of discourse.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272194-->
END%%
%%ANKI
Basic
What is the identity element of $\lor$?
Back: $F$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494819970-->
END%%
#### Uniqueness
We can also denote existence and uniqueness using $\exists!$. For example, $\exists! x, P(x)$ indicates there exists a unique $x$ satisfying $P(x)$, i.e. there is exactly one $x$ such that $P(x)$ holds: $$(\exists! x, P(x)) = (\exists x, P(x)) \land (\forall x, \forall y, (P(x) \land P(y)) \Rightarrow (x = y)))$$
The first conjunct denotes existence while the second denotes uniqueness.
%%ANKI
Basic
What non-counting quantifer denotes unique existential quantification?
Back: $\exists!$
Reference: Patrick Keef and David Guichard, “An Introduction to Higher Mathematics,” n.d.
<!--ID: 1721824073159-->
END%%
%%ANKI
Basic
Unique existential quantification can be expressed using what counting quantification?
Back: $\exists^{=1}$
Reference: Patrick Keef and David Guichard, “An Introduction to Higher Mathematics,” n.d.
<!--ID: 1721824073162-->
END%%
%%ANKI
Basic
How is $\exists! x, P(x)$ expanded using the basic existential and universal quantifiers?
Back: $(\exists x, P(x)) \land (\forall x, \forall y, (P(x) \land P(y)) \Rightarrow (x = y))$
Reference: Patrick Keef and David Guichard, “An Introduction to Higher Mathematics,” n.d.
<!--ID: 1721824073165-->
END%%
%%ANKI
Basic
How do we write the existence (not uniqueness) assertion made by $\exists! x, P(x)$?
Back: $\exists x, P(x)$
Reference: Patrick Keef and David Guichard, “An Introduction to Higher Mathematics,” n.d.
<!--ID: 1721824073168-->
END%%
%%ANKI
Basic
How do we write the uniqueness (not existence) assertion made by $\exists! x, P(x)$?
Back: $\forall x, \forall y, (P(x) \land P(y)) \Rightarrow (x = y)$
Reference: Patrick Keef and David Guichard, “An Introduction to Higher Mathematics,” n.d.
<!--ID: 1721824073172-->
END%%
#### Counting
**Counting quantification** ($\exists^{=k}$ or $\exists^{\geq k}$) asserts that (at least) $k$ (say) members of a set satisfy a property.
%%ANKI
Basic
What symbol denotes counting quantification (of *exactly* $k$ members)?
Back: $\exists^{=k}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494819983-->
END%%
%%ANKI
Basic
What symbol denotes counting quantification (of *at least* $k$ members)?
Back: $\exists^{\geq k}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494819985-->
END%%
%%ANKI
Basic
How is $\exists x : S, P(x)$ written in terms of counting quantification?
Back: $\exists^{\geq 1}\, x : S, P(x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494832056-->
END%%
%%ANKI
Basic
How is $\forall x : S, P(x)$ written in terms of counting quantification?
Back: Assuming $S$ has $k$ members, $\exists^{= k}\, x : S, P(x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494832058-->
END%%
%%ANKI
Cloze
Propositional logical operator: $\forall x, \forall y, P(x, y)$ {$\Leftrightarrow$} $\forall y, \forall x, P(x, y)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739967-->
END%%
%%ANKI
Cloze
Propositional logical operator: $\forall x, \exists y, P(x, y)$ {$\Leftarrow$} {$\exists y, \forall x, P(x, y)$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739972-->
END%%
%%ANKI
Cloze
Propositional logical operator: $\exists x, \forall y, P(x, y)$ {$\Rightarrow$} $\forall y, \exists x, P(x, y)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327739978-->
END%%
%%ANKI
Cloze
Propositional logical operator: $\exists x, \exists y, P(x, y)$ {$\Leftrightarrow$} $\exists y, \exists x, P(x, y)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718327812365-->
END%%
%%ANKI
Basic
When does $\exists x, \forall y, P(x, y) \Rightarrow \forall y, \exists x, P(x, y)$ hold true?
Back: Always.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720386023292-->
END%%
%%ANKI
Basic
When does $\forall x, \exists y, P(x, y) \Rightarrow \exists y, \forall x, P(x, y)$ hold true?
Back: When there exists a $y$ that $P(x, y)$ holds for over all quantified $x$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720386023296-->
END%%
### Universals
**Universal quantification** ($\forall$) asserts that every member of a set satisfies a property.
%%ANKI
Basic
What symbol denotes universal quantification?
Back: $\forall$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494819971-->
END%%
%%ANKI
Basic
How many members in the domain of discourse must satisfy a property in universal quantification?
Back: All of them.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494819973-->
END%%
%%ANKI
Basic
$\forall x : S, P(x)$ is an abbreviation for what?
Back: $\forall x, x \in S \Rightarrow P(x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494819976-->
END%%
%%ANKI
Basic
What is the identity element of $\land$?
Back: $T$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494819978-->
END%%
%%ANKI
Cloze
{1:$\exists$} is to {2:$\lor$} as {2:$\forall$} is to {1:$\land$}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494819979-->
END%%
%%ANKI
Basic
How is $\forall x : S, P(x)$ equivalently written in terms of existential quantification?
Back: $\neg \exists x : S, \neg P(x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707494819981-->
END%%
%%ANKI
How is $\exists x : S, P(x)$ equivalently written in terms of universal quantification?
Back: $\neg \forall x : S, \neg P(x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
## Identifiers
Identifiers are said to be **bound** if they are parameters to a quantifier. Identifiers that are not bound are said to be **free**. A first-order logic formula is said to be in **prenex normal form** (PNF) if written in two parts: the first consisting of quantifiers and bound variables (the **prefix**), and the second consisting of no quantifiers (the **matrix**).
%%ANKI
Basic
Prenex normal form consists of what two parts?
Back: The prefix and the matrix.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707674796773-->
END%%
%%ANKI
Basic
How is the prefix of a formula in PNF formatted?
Back: As only quantifiers and bound variables.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707674796775-->
END%%
%%ANKI
Basic
How is the matrix of a formula in PNF formatted?
Back: Without quantifiers.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707674796776-->
END%%
%%ANKI
Basic
Which identifiers in the following are bound? $\exists x, P(x) \land P(y)$
Back: Just $x$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707674796777-->
END%%
%%ANKI
Basic
Which identifiers in the following are free? $\exists x, P(x) \land P(y)$
Back: Just $y$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707674796779-->
END%%
%%ANKI
Basic
How is the following rewritten in PNF? $(\exists x, P(x)) \land (\exists y, Q(y))$
Back: $\exists x \;y, P(x) \land Q(y)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707675399517-->
END%%
%%ANKI
Basic
How is the following rewritten in PNF? $(\exists x, P(x)) \land (\forall y, Q(y))$
Back: N/A.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1720665224639-->
END%%
## Bibliography
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
* Patrick Keef and David Guichard, “An Introduction to Higher Mathematics,” n.d.