28 KiB
title | TARGET DECK | FILE TAGS | tags | ||
---|---|---|---|---|---|
Propositional Logic | Obsidian::STEM | logic::propositional |
|
Overview
A branch of logic derived from negation (\neg
), conjunction (\land
), disjunction (\lor
), implication (\Rightarrow
), and biconditionals (\Leftrightarrow
). A proposition is a sentence that can be assigned a truth or false value.
%%ANKI Cloze {Propositional} logic is also known as {zeroth}-order logic. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What are the basic propositional logical operators?
Back: \neg
, \land
, \lor
, \Rightarrow
, and \Leftrightarrow
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What is a proposition? Back: A declarative sentence which is either true or false. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What two categories do propositions fall within? Back: Atomic and molecular propositions. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What is an atomic proposition? Back: One that cannot be broken up into smaller propositions. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What is a molecular proposition? Back: One that can be broken up into smaller propositions. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Cloze A {molecular} proposition can be broken up into {atomic} propositions. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What distinguishes a sentence from a proposition? Back: The latter has an associated truth value. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What are constant propositions? Back: Propositions that contain only constants as operands. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
How does Lean define propositional equality?
Back: Expressions a
and b
are propositionally equal iff a = b
is true.
Reference: Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
Tags: lean
END%%
%%ANKI
Basic
How does Lean define propext
?
Back:
axiom propext {a b : Prop} : (a ↔ b) → (a = b)
Reference: Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d. Tags: lean
END%%
Implication
Implication is denoted as \Rightarrow
. It has truth table \begin{array}{c|c|c} p & q & p \Rightarrow q \ \hline T & T & T \ T & F & F \ F & T & T \ F & F & T \end{array}
Implication has a few "equivalent" English expressions that are commonly used.
Given propositions P
and Q
, we have the following equivalences:
P
ifQ
P
only ifQ
P
is necessary forQ
P
is sufficient forQ
%%ANKI
Basic
What name is given to operand a
in a \Rightarrow b
?
Back: The antecedent
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What name is given to operand b
in a \Rightarrow b
?
Back: The consequent
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
How do you write "P
if Q
" in propositional logic?
Back: Q \Rightarrow P
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
if Q
" using "necessary"?
Back: P
is necessary for Q
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
if Q
" using "sufficient"?
Back: Q
is sufficient for P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
only if Q
" in propositional logic?
Back: P \Rightarrow Q
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
only if Q
" using "necessary"?
Back: Q
is necessary for P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
only if Q
" using "sufficient"?
Back: P
is sufficient for Q
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is necessary for Q
" in propositional logic?
Back: Q \Rightarrow P
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is necessary for Q
" using "if"?
Back: P
if Q
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is necessary for Q
" using "only if"?
Back: Q
only if P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is sufficient for Q
" in propositional logic?
Back: P \Rightarrow Q
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is sufficient for Q
" using "if"?
Back: Q
if P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is sufficient for Q
" using "only if"?
Back: P
only if Q
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
if Q
" using "only if"?
Back: Q
only if P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is sufficient for Q
" using "necessary"?
Back: Q
is necessary for P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
only if Q
" using "if"?
Back: Q
if P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is necessary for Q
" using "sufficient"?
Back: Q
is sufficient for P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
Which logical operator maps to "if and only if"?
Back: \Leftrightarrow
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
Which logical operator maps to "necessary and sufficient"?
Back: \Leftrightarrow
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What is the converse of P \Rightarrow Q
?
Back: Q \Rightarrow P
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic When is implication equivalent to its converse? Back: It's indeterminate. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What is the contrapositive of P \Rightarrow Q
?
Back: \neg Q \Rightarrow \neg P
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic When is implication equivalent to its contrapositive? Back: They are always equivalent. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
Given propositions p
and q
, p \Leftrightarrow q
is equivalent to the conjunction of what two expressions?
Back: p \Rightarrow q
and q \Rightarrow p
.
Reference: Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
Laws
Commutativity
For propositions E1
and E2
:
(E1 \land E2) = (E2 \land E1)
(E1 \lor E2) = (E2 \lor E1)
(E1 = E2) = (E2 = E1)
%%ANKI
Basic
Which of the basic logical operators do the commutative laws apply to?
Back: \land
, \lor
, and =
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What do the commutative laws allow us to do? Back: Reorder operands. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is the commutative law of e.g. \land
?
Back: E1 \land E2 = E2 \land E1
END%%
Associativity
For propositions E1
, E2
, and E3
:
E1 \land (E2 \land E3) = (E1 \land E2) \land E3
E1 \lor (E2 \lor E3) = (E1 \lor E2) \lor E3
%%ANKI
Basic
Which of the basic logical operators do the associative laws apply to?
Back: \land
and \lor
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What do the associative laws allow us to do? Back: Remove parentheses. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is the associative law of e.g. \land
?
Back: E1 \land (E2 \land E3) = (E1 \land E2) \land E3
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
Distributivity
For propositions E1
, E2
, and E3
:
E1 \lor (E2 \land E3) = (E1 \lor E2) \land (E1 \lor E3)
E1 \land (E2 \lor E3) = (E1 \land E2) \lor (E1 \land E3)
%%ANKI
Basic
Which of the basic logical operators do the distributive laws apply to?
Back: \land
and \lor
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What do the distributive laws allow us to do? Back: "Factor" propositions. Reference: Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is the distributive law of e.g. \land
over \lor
?
Back: E1 \land (E2 \lor E3) = (E1 \land E2) \lor (E1 \land E3)
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
De Morgan's
For propositions E1
and E2
:
\neg (E1 \land E2) = \neg E1 \lor \neg E2
\neg (E1 \lor E2) = \neg E1 \land \neg E2
%%ANKI
Basic
Which of the basic logical operators do De Morgan's laws involve?
Back: \neg
, \land
, and \lor
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
How is De Morgan's law (distributing \land
) expressed as an equivalence?
Back: \neg (E1 \land E2) = \neg E1 \lor \neg E2
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: programming::equiv-trans
END%%
Law of Negation
For any proposition E1
, it follows that \neg (\neg E1) = E1
.
%%ANKI
Basic
How is the law of negation expressed as an equivalence?
Back: \neg (\neg E1) = E1
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: programming::equiv-trans
END%%
Law of Excluded Middle
For any proposition E1
, it follows that E1 \lor \neg E1 = T
.
%%ANKI
Basic
Which of the basic logical operators does the law of excluded middle involve?
Back: \lor
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
How is the law of excluded middle expressed as an equivalence?
Back: E1 \lor \neg E1 = T
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: programming::equiv-trans
END%%
%%ANKI Basic Which equivalence schema is "refuted" by sentence, "This sentence is false." Back: The law of excluded middle Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
Law of Contradiction
For any proposition E1
, it follows that E1 \land \neg E1 = F
.
%%ANKI
Basic
Which of the basic logical operators does the law of contradiction involve?
Back: \land
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
How is the law of contradiction expressed as an equivalence?
Back: E1 \land \neg E1 = F
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: programming::equiv-trans
END%%
%%ANKI
Cloze
The law of {1:excluded middle} is to {2:\lor
} whereas the law of {2:contradiction} is to {1:\land
}.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What does the principle of explosion state? Back: That any statement can be proven from a contradiction. Reference: “Principle of Explosion,” in Wikipedia, July 3, 2024, https://en.wikipedia.org/w/index.php?title=Principle_of_explosion.
END%%
%%ANKI
Basic
How is the principle of explosion stated in first-order logic?
Back: \forall P, F \Rightarrow P
Reference: “Principle of Explosion,” in Wikipedia, July 3, 2024, https://en.wikipedia.org/w/index.php?title=Principle_of_explosion.
END%%
%%ANKI
Basic
What does the law of contradiction say?
Back: For any proposition P
, it holds that \neg (P \land \neg P)
.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic How does the principle of explosion relate to the law of contradiction? Back: If a contradiction could be proven, then anything can be proven. Reference: “Principle of Explosion,” in Wikipedia, July 3, 2024, https://en.wikipedia.org/w/index.php?title=Principle_of_explosion.
END%%
%%ANKI
Basic
Suppose P
and \neg P
. Show schematically how to use the principle of explosion to prove Q
.
Back: \begin{align*} P \ \neg P \ P \lor Q \ \hline Q \end{align*}$$Reference: “Principle of Explosion,” in Wikipedia, July 3, 2024, https://en.wikipedia.org/w/index.php?title=Principle_of_explosion.
END%%
%%ANKI Cloze The law of {contradiction} and law of {excluded middle} create a dichotomy in "logical space". Reference: “Law of Noncontradiction,” in Wikipedia, June 14, 2024, https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction.
END%%
%%ANKI Basic Which property of partitions is analagous to the law of contradiction on "logical space"? Back: Disjointedness. Reference: “Law of Noncontradiction,” in Wikipedia, June 14, 2024, https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction.
END%%
%%ANKI Basic Which property of partitions is analagous to the law of excluded middle on "logical space"? Back: Exhaustiveness. Reference: “Law of Noncontradiction,” in Wikipedia, June 14, 2024, https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction.
END%%
%%ANKI Cloze The law of {1:contradiction} is to "{2:mutually exclusive}" whereas the law of {2:excluded middle} is "{1:jointly exhaustive}". Reference: “Law of Noncontradiction,” in Wikipedia, June 14, 2024, https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction.
END%%
%%ANKI Basic Which logical law proves equivalence of the law of contradiction and excluded middle? Back: De Morgan's law. Reference: “Law of Noncontradiction,” in Wikipedia, June 14, 2024, https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction.
END%%
As Sets
A state is a function that maps identifiers to T
or F
. A proposition can be equivalently seen as a representation of the set of states in which it is true.
%%ANKI Basic What is a state? Back: A function mapping identifiers to values. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
Is (b \land c)
well-defined in \{\langle b, T \rangle, \langle c, F \rangle\}
?
Back: Yes.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
Is (b \lor d)
well-defined in \{\langle b, T \rangle, \langle c, F \rangle\}
?
Back: No.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic A proposition is well-defined with respect to what? Back: A state to evaluate against. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What proposition represents states \{(b, T), (c, T)\}
and \{(b, F), (c, F)\}
?
Back: (b \land c) \lor (\neg b \land \neg c)
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What set of states does proposition a \land b
represent?
Back: \{\{\langle a, T \rangle, \langle b, T \rangle\}\}
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What set of states does proposition a \lor b
represent?
Back: \{\{\langle a, T \rangle, \langle b, T \rangle\}, \{\langle a, T \rangle, \langle b, F \rangle\}, \{\langle a, F \rangle, \langle b, T \rangle\}\}
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is sloppy about phrase "the states in b \lor \neg c
"?
Back: b \lor \neg c
is not a set but a representation of a set (of states).
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is the weakest proposition?
Back: T
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What set of states does T
represent?
Back: The set of all states.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is the strongest proposition?
Back: F
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What set of states does F
represent?
Back: The set of no states.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What does a proposition represent? Back: The set of states in which it is true. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
When is p
stronger than q
?
Back: When p \Rightarrow q
.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
If p \Rightarrow q
, which of p
or q
is considered stronger?
Back: p
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
When is p
weaker than q
?
Back: When q \Rightarrow p
.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
If p \Rightarrow q
, which of p
or q
is considered weaker?
Back: q
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
Why is b \land c
stronger than b \lor c
?
Back: The former represents a subset of the states the latter represents.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
Given sets a
and b
, a = b
is equivalent to the conjunction of what two expressions?
Back: a \subseteq b
and b \subseteq a
.
Reference: Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Cloze
{a \Rightarrow b
} is to propositional logic as {a \subseteq b
} is to sets.
Reference: Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Cloze
{a \Leftrightarrow b
} is to propositional logic as {a = b
} is to sets.
Reference: Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
Bibliography
- Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
- “Law of Noncontradiction,” in Wikipedia, June 14, 2024, https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction.
-
- Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
- “Principle of Explosion,” in Wikipedia, July 3, 2024, https://en.wikipedia.org/w/index.php?title=Principle_of_explosion.