124 lines
3.7 KiB
Markdown
124 lines
3.7 KiB
Markdown
---
|
||
title: Truth Tables
|
||
TARGET DECK: Obsidian::STEM
|
||
FILE TAGS: logic
|
||
tags:
|
||
- logic
|
||
---
|
||
|
||
## Overview
|
||
|
||
Every proposition can be written in **disjunctive normal form** (DNF) and **conjunctive normal form** (CNF). This is evident with the use of truth tables. To write a proposition in DNF, write its corresponding truth table and $\lor$ each row that evaluates to $T$. To write the same proposition in CNF, apply $\lor$ to each row that evaluates to $F$ and negate it.
|
||
|
||
$$\neg (a \Rightarrow b) \Leftrightarrow c$$
|
||
|
||
It's truth table looks like
|
||
|
||
$$\begin{array}{c|c|c|c|c|c}
|
||
\neg & (a & \Rightarrow & b) & \Leftrightarrow & c \\
|
||
\hline
|
||
F & T & T & T & F & T \\
|
||
F & T & T & T & T & F \\
|
||
T & T & F & F & T & T \\
|
||
T & T & F & F & F & F \\
|
||
F & F & T & T & F & T \\
|
||
F & F & T & T & T & F \\
|
||
F & F & T & F & F & T \\
|
||
F & F & T & F & T & F
|
||
\end{array}$$
|
||
|
||
and it's DNF looks like
|
||
|
||
$$
|
||
(a \land b \land \neg c) \lor
|
||
(a \land \neg b \land c) \lor
|
||
(\neg a \land b \land \neg c) \lor
|
||
(\neg a \land \neg b \land \neg c)
|
||
$$
|
||
|
||
It's CNF results from applying De Morgan's Law to the truth table's "complement":
|
||
|
||
$$
|
||
\neg(
|
||
(a \land b \land c) \lor
|
||
(a \land \neg b \land \neg c) \lor
|
||
(\neg a \land b \land c) \lor
|
||
(\neg a \land \neg b \land c)
|
||
)
|
||
$$
|
||
|
||
%%ANKI
|
||
Basic
|
||
What construct is used to prove every proposition can be written in DNF or CNF?
|
||
Back: Truth tables.
|
||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||
<!--ID: 1707311868994-->
|
||
END%%
|
||
|
||
%%ANKI
|
||
Basic
|
||
Where are $\land$ and $\lor$ found within a DNF proposition?
|
||
Back: $\lor$ separates disjuncts containing $\land$.
|
||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||
<!--ID: 1707311868998-->
|
||
END%%
|
||
|
||
%%ANKI
|
||
Basic
|
||
What is DNF an acronym for?
|
||
Back: **D**isjunctive **N**ormal **F**orm.
|
||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||
<!--ID: 1707311869000-->
|
||
END%%
|
||
|
||
%%ANKI
|
||
Basic
|
||
What is CNF an acronym for?
|
||
Back: **C**onjunctive **N**ormal **F**orm.
|
||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||
<!--ID: 1707311869002-->
|
||
END%%
|
||
|
||
%%ANKI
|
||
Basic
|
||
Where are $\land$ and $\lor$ found within a CNF proposition?
|
||
Back: $\land$ separates conjuncts containing $\lor$.
|
||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||
<!--ID: 1707311869003-->
|
||
END%%
|
||
|
||
%%ANKI
|
||
Basic
|
||
What analog to truth tables is found in the algebra of sets?
|
||
Back: Membership tables.
|
||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||
<!--ID: 1716803633023-->
|
||
END%%
|
||
|
||
%%ANKI
|
||
Cloze
|
||
{Truth} tables are to propositions whereas {membership} tables are to set identities.
|
||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||
<!--ID: 1716803633029-->
|
||
END%%
|
||
|
||
%%ANKI
|
||
Basic
|
||
How many rows are in the truth table of identity $\neg (a \Rightarrow b) \Leftrightarrow c$?
|
||
Back: $2^3 = 8$
|
||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||
<!--ID: 1716803798112-->
|
||
END%%
|
||
|
||
%%ANKI
|
||
Basic
|
||
How many rows are in the membership table of identity $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$?
|
||
Back: $2^3 = 8$
|
||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||
<!--ID: 1716803798123-->
|
||
END%%
|
||
|
||
## Bibliography
|
||
|
||
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). |