notebook/notes/set/index.md

1204 lines
39 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
title: Set
TARGET DECK: Obsidian::STEM
FILE TAGS: set
tags:
- set
---
## Overview
Set theory begins with two primitive notions of sets and membership. Other axioms are defined relative to these concepts.
%%ANKI
Basic
What are the two primitive notions of set theory?
Back: Sets and membership.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717417781230-->
END%%
%%ANKI
Basic
How does Enderton describe a primitive notion?
Back: An undefined concept other concepts are defined with.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717417781236-->
END%%
%%ANKI
Basic
Axioms can be thought of as doing what to primitive notions?
Back: Divulging partial information about their meaning.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717417781239-->
END%%
%%ANKI
Basic
How does Cormen et al. define a *dynamic* set?
Back: As a set that can change over time.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: adt::dynamic_set
<!--ID: 1715432070055-->
END%%
%%ANKI
Basic
How does Cormen et al. distinguish mathematical sets from dynamic sets?
Back: The former is assumed to be unchanging.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: adt::dynamic_set
<!--ID: 1715432070059-->
END%%
%%ANKI
Basic
How does Cormen et al. define a dictionary?
Back: As a dynamic set that allows insertions, deletions, and membership tests.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: adt::dynamic_set
<!--ID: 1715432070063-->
END%%
%%ANKI
Basic
Which of dynamic sets and dictionaries are more general?
Back: The dynamic set.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: adt::dynamic_set
<!--ID: 1715432070067-->
END%%
%%ANKI
Basic
Is a dynamic set a dictionary?
Back: Not necessarily.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: adt::dynamic_set
<!--ID: 1715432070071-->
END%%
%%ANKI
Basic
Is a dictionary a dynamic set?
Back: Yes.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: adt::dynamic_set
<!--ID: 1715432070077-->
END%%
%%ANKI
Cloze
A dictionary supports {insertions}, {deletions}, and {membership testing}.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: adt::dynamic_set
<!--ID: 1715432070083-->
END%%
Sets are often denoted using **roster notation** in which members are specified explicitly in a comma-delimited list surrounded by curly braces. Alternatively, **abstraction** (or **set-builder notation**) defines sets using an **entrance requirement**. Examples of the set of prime numbers less than $10$:
* Roster notation: $\{2, 3, 5, 7\}$
* Set-builder notation: $\{x \mid x < 10 \land x \text{ is prime}\}$
%%ANKI
Basic
Define the set of prime numbers less than $10$ using abstraction.
Back: $\{x \mid x < 10 \land x \text{ is prime}\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715786028616-->
END%%
%%ANKI
Basic
Define the set of prime numbers less than $5$ using set-builder notation.
Back: $\{x \mid x < 5 \land x \text{ is prime}\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715786028645-->
END%%
%%ANKI
Basic
Define the set of prime numbers less than $5$ using roster notation.
Back: $\{2, 3\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715786028649-->
END%%
%%ANKI
Basic
Define the set of prime numbers less than $5$ using abstraction.
Back: $\{x \mid x < 5 \land x \text{ is prime}\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715786028652-->
END%%
%%ANKI
Basic
What term describes the expression to the right of $\mid$ in set-builder notation?
Back: The entrance requirement.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715786028656-->
END%%
%%ANKI
Basic
What term refers to $\_\_\; x\; \_\_$ in $\{x \mid \_\_\; x\; \_\_\}$?
Back: The entrance requirement.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715786028659-->
END%%
%%ANKI
Basic
The term "entrance requirement" refers to what kind of set notation?
Back: Set-builder/abstraction.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715786028663-->
END%%
%%ANKI
Basic
What name is given to set notation in which members are explicitly listed?
Back: Roster notation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715786028667-->
END%%
%%ANKI
Basic
What does an atom refer to in set theory?
Back: Any entity that is not a set but can exist in one.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716494526269-->
END%%
%%ANKI
Basic
What German term is used alternatively for "atoms"?
Back: Urelements.
Reference: Simon Hewitt, “A Cardinal Worry for Permissive Metaontology,” _Metaphysica_ 16, no. 2 (September 18, 2015): 15965, [https://doi.org/10.1515/mp-2015-0009](https://doi.org/10.1515/mp-2015-0009).
<!--ID: 1720998380904-->
END%%
%%ANKI
Basic
Can sets be members of urelements?
Back: No.
Reference: Simon Hewitt, “A Cardinal Worry for Permissive Metaontology,” _Metaphysica_ 16, no. 2 (September 18, 2015): 15965, [https://doi.org/10.1515/mp-2015-0009](https://doi.org/10.1515/mp-2015-0009).
<!--ID: 1720998380907-->
END%%
%%ANKI
Basic
Can urelements be members of sets?
Back: Yes.
Reference: Simon Hewitt, “A Cardinal Worry for Permissive Metaontology,” _Metaphysica_ 16, no. 2 (September 18, 2015): 15965, [https://doi.org/10.1515/mp-2015-0009](https://doi.org/10.1515/mp-2015-0009).
<!--ID: 1720998380909-->
END%%
%%ANKI
Basic
Can urelements be members of urelements?
Back: No.
Reference: Simon Hewitt, “A Cardinal Worry for Permissive Metaontology,” _Metaphysica_ 16, no. 2 (September 18, 2015): 15965, [https://doi.org/10.1515/mp-2015-0009](https://doi.org/10.1515/mp-2015-0009).
<!--ID: 1720998380910-->
END%%
%%ANKI
Basic
Can sets be members of sets?
Back: Yes.
Reference: Simon Hewitt, “A Cardinal Worry for Permissive Metaontology,” _Metaphysica_ 16, no. 2 (September 18, 2015): 15965, [https://doi.org/10.1515/mp-2015-0009](https://doi.org/10.1515/mp-2015-0009).
<!--ID: 1720998380911-->
END%%
%%ANKI
Cloze
An {atom} is to set theory as an {atomic} logical statement is to propositional logic.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716807316136-->
END%%
%%ANKI
Cloze
A {set} is to set theory as a {2:molecular} logical statement is to propositional logic.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716807316144-->
END%%
%%ANKI
Basic
What distinguishes a set from an atom?
Back: An atom cannot contain other entitites.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716494526277-->
END%%
%%ANKI
Basic
What intuition is broken when a box is viewed as an atom?
Back: When viewed as an atom, the box is no longer a container.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716494526280-->
END%%
%%ANKI
Basic
Enderton's exposition makes what assumption about the set of all atoms?
Back: It is the empty set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716494526284-->
END%%
%%ANKI
Basic
How are members of the following set defined using extensionality and first-order logic? $$B = \{P(x) \mid \phi(x)\}$$
Back: $\forall x, P(x) \in B \Leftrightarrow \phi(x)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720369624727-->
END%%
%%ANKI
Basic
How are members of the following set defined using extensionality and first-order logic? $$B = \{x \mid x < 5 \land x \text{ is prime}\}$$
Back: $\forall x, x \in B \Leftrightarrow (x < 5 \land x \text{ is prime})$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720369624730-->
END%%
%%ANKI
Cloze
$P(x) = T$ is equivalently written as $x \in$ {$\{v \mid P(v)\}$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720369624733-->
END%%
%%ANKI
Cloze
$\exists u \in A, uFx$ is equivalently written as $x \in$ {$F[\![A]\!]$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720369624735-->
END%%
%%ANKI
Basic
How is set $\{P(y) \mid y \in B\}$ interpreted?
Back: As the set of $P(y)$ for all $y \in B$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720369624736-->
END%%
%%ANKI
Basic
Given function $P$, how is set $\{P(y) \mid y \in B\}$ more compactly denoted?
Back: $P[\![B]\!]$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720369624737-->
END%%
%%ANKI
Basic
How is set $\{P(y) \mid \exists y \in B\}$ interpreted?
Back: If $B$ is empty, the empty set. Otherwise as singleton $\{P(y)\}$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720369624738-->
END%%
%%ANKI
Basic
How many members are in set $\{P(y) \mid \exists y \in B\}$?
Back: At most $1$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720369624739-->
END%%
%%ANKI
Basic
In set-builder notation, the left side of $\{\ldots \mid \ldots\}$ denotes what?
Back: The members of the set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720370610010-->
END%%
%%ANKI
Basic
In set-builder notation, the right side of $\{\ldots \mid \ldots\}$ denotes what?
Back: The entrance requirement.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720370610016-->
END%%
%%ANKI
Basic
How is set $\{v \mid \exists A \in B, v = A\}$ written more compactly?
Back: $B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720370610022-->
END%%
%%ANKI
Basic
How is set $\{v \mid \exists A \in B, v \in A\}$ written more compactly?
Back: $\bigcup B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720370610028-->
END%%
%%ANKI
Basic
How is $\{A \mid A \in B\}$ rewritten with an existential in the entrance requirement?
Back: $\{v \mid \exists A \in B \land v = A\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720381621849-->
END%%
## Extensionality
If two sets have exactly the same members, then they are equal: $$\forall A, \forall B, (\forall x, x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
%%ANKI
Basic
What does the extensionality axiom state?
Back: If two sets have exactly the same members, then they are equal.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649069247-->
END%%
%%ANKI
Basic
How is the extensionality axiom expressed using first-order logic?
Back: $$\forall A, \forall B, (\forall x, x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649734312-->
END%%
%%ANKI
Basic
The following encodes which set theory axiom? $$\forall A, \forall B, (\forall x, x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
Back: The extensionality axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649069254-->
END%%
%%ANKI
Basic
How many sets exist with no members?
Back: Exactly one.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649069256-->
END%%
%%ANKI
Basic
Which set theory axiom proves uniqueness of $\varnothing$?
Back: The extensionality axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649069259-->
END%%
%%ANKI
Basic
What axiom is used to prove two sets are equal to one another?
Back: Extensionality.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717372494462-->
END%%
%%ANKI
Basic
Let $A$ and $B$ be sets. Proving the following is equivalent to showing what class is a set? $$\exists C, \forall y, (y \in C \Leftrightarrow y = \{x\} \times B \text{ for some } x \in A)$$
Back: $\{\{x\} \times B \mid x \in A\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1718105051820-->
END%%
## Empty Set Axiom
There exists a set having no members: $$\exists B, \forall x, x \not\in B$$
%%ANKI
Basic
What does the empty set axiom state?
Back: There exists a set having no members.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649734322-->
END%%
%%ANKI
Basic
How is the empty set axiom expressed using first-order logic?
Back: $$\exists B, \forall x, x \not\in B$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649734327-->
END%%
%%ANKI
Basic
The following encodes which set theory axiom? $$\exists B, \forall x, x \not\in B$$
Back: The empty set axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649734332-->
END%%
%%ANKI
Basic
Which set theory axiom proves existence of $\varnothing$?
Back: The empty set axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649069259-->
END%%
%%ANKI
Basic
What two properties ensures definition $\varnothing$ is well-defined?
Back: Existence and uniqueness.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034312-->
END%%
%%ANKI
Basic
How is the empty set defined using set-builder notation?
Back: $\{x \mid x \neq x\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715900348141-->
END%%
## Pairing Axiom
For any sets $u$ and $v$, there exists a set having as members just $u$ and $v$: $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$
%%ANKI
Basic
What does the pairing axiom state?
Back: For any sets $u$ and $v$, there exists a set having as members just $u$ and $v$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649734337-->
END%%
%%ANKI
Basic
How is the pairing axiom expressed using first-order logic?
Back: $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649734341-->
END%%
%%ANKI
Basic
The following encodes which set theory axiom? $$\forall u, \forall v, \exists B, \forall x, (x \in B \Leftrightarrow x = u \lor x = v)$$
Back: The pairing axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649734346-->
END%%
%%ANKI
Basic
Which set theory axiom proves existence of set $\{x, y\}$ where $x \neq y$?
Back: The pairing axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649734351-->
END%%
%%ANKI
Basic
Which set theory axiom proves existence of set $\{x\}$?
Back: The pairing axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715649734357-->
END%%
%%ANKI
Basic
For sets $u$ and $v$, what name is given to set $\{u, v\}$?
Back: The pair set of $u$ and $v$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034322-->
END%%
%%ANKI
Basic
In set theory, what does a singleton refer to?
Back: A set with exactly one member.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034325-->
END%%
%%ANKI
Basic
What set theory axiom is used to prove existence of singletons?
Back: The pairing axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034329-->
END%%
%%ANKI
Basic
How is the pair set $\{u, v\}$ defined using set-builder notation?
Back: $\{x \mid x = u \lor x = v\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715900348148-->
END%%
## Union Axiom
### Preliminary Form
For any sets $a$ and $b$, there exists a set whose members are those sets belonging either to $a$ or to $b$ (or both): $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$
%%ANKI
Basic
What does the union axiom (preliminary form) state?
Back: For any sets $a$ and $b$, there exists a set whose members are all in either $a$ or $b$ (or both).
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034333-->
END%%
%%ANKI
Basic
How is the union axiom (preliminary form) expressed using first-order logic?
Back: $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034337-->
END%%
%%ANKI
Basic
The following encodes which set theory axiom? $$\forall a, \forall b, \exists B, \forall x, (x \in B \Leftrightarrow x \in a \lor x \in b)$$
Back: The union axiom (preliminary form).
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034341-->
END%%
%%ANKI
Basic
How is the union of sets $a$ and $b$ denoted?
Back: $a \cup b$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034346-->
END%%
%%ANKI
Basic
What two set theory axioms prove existence of e.g. $\{x_1, x_2, x_3\}$?
Back: The pairing axiom and union axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034351-->
END%%
%%ANKI
Basic
How is the union of set $a$ and $b$ defined using set-builder notation?
Back: $\{x \mid x \in a \lor x \in b\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715900348153-->
END%%
%%ANKI
Basic
What set operation is shaded green in the following venn diagram?
![[venn-diagram-union.png]]
Back: $A \cup B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716395245855-->
END%%
%%ANKI
Basic
What does $\bigcup\,\{x\}$ evaluate to?
Back: $x$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1723933434782-->
END%%
### General Form
For any set $A$, there exists a set $B$ whose elements are exactly the members of the members of $A$: $$\forall A, \exists B, \forall x, x \in B \Leftrightarrow (\exists b \in B, x \in b)$$
%%ANKI
Basic
What does the union axiom (general form) state?
Back: For any set $A$, there exists a set $B$ whose elements are exactly the members of the members of $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007845-->
END%%
%%ANKI
Basic
How is the union axiom (general form) expressed using first-order logic?
Back: $$\forall A, \exists B, \forall x, x \in B \Leftrightarrow (\exists a \in A, x \in a)$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007849-->
END%%
%%ANKI
Basic
What advantage does the general form of the union axiom have over its preliminary form?
Back: The general form can handle infinite sets.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007851-->
END%%
%%ANKI
Basic
How is the preliminary form of the union axiom proven using the general form?
Back: For any sets $a$ and $b$, $\bigcup \{a, b\} = a \cup b$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007853-->
END%%
%%ANKI
Basic
What is the result of $\bigcup \{\{2, 4, 6\}, \{6, 16, 26\}, \{0\}\}$?
Back: $\{2, 4, 6, 16, 26, 0\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007855-->
END%%
%%ANKI
Basic
What is the result of $\bigcup \varnothing$?
Back: $\varnothing$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007857-->
END%%
%%ANKI
Basic
How is $\bigcup A$ represented in first-order logic?
Back: $\{x \mid \exists a \in A, x \in a\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007859-->
END%%
%%ANKI
Basic
Roughly speaking, how does $\bigcup A$ adjust as $A$ gets larger?
Back: $\bigcup A$ gets larger.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007861-->
END%%
%%ANKI
Basic
If $A \subseteq B$, how do $\bigcup A$ and $\bigcup B$ relate?
Back: $\bigcup A \subseteq \bigcup B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007864-->
END%%
%%ANKI
Basic
What kind of mathematical object is the absolute complement of set $A$?
Back: A class.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716395245860-->
END%%
%%ANKI
Basic
What kind of mathematical object is the relative complement of set $B$ in $A$?
Back: A set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716395245862-->
END%%
%%ANKI
Cloze
{1:Classes} are to {2:absolute} complements whereas {2:sets} are to {1:relative} complements.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716395245866-->
END%%
%%ANKI
Basic
What contradiction arises when arguing the absolute complement of set $A$ is a set?
Back: The union of the complement with $A$ is the *class* of all sets.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716395245868-->
END%%
%%ANKI
Basic
Why is the absolute complement of sets rarely useful in set theory?
Back: The absolute complement of a set isn't a set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716395245870-->
END%%
%%ANKI
Basic
What set operation is shaded green in the following venn diagram?
![[venn-diagram-abs-comp.png]]
Back: The absolute complement of $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716397645564-->
END%%
%%ANKI
Cloze
Let $A$ be a set and $C = \bigcup\, \{ x \mid \_\_\_ \}$. Then $C$ {$\supseteq$} $A$ if $A$ satisfies the {entrance requirement}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1729684927439-->
END%%
## Power Set Axiom
For any set $a$, there is a set whose members are exactly the subsets of $a$: $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
%%ANKI
Basic
What does the power set axiom state?
Back: For any set $a$, there exists a set whose members are exactly the subsets of $a$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034356-->
END%%
%%ANKI
Basic
How is the power set axiom expressed using first-order logic?
Back: $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034361-->
END%%
%%ANKI
Basic
The following encodes which set theory axiom? $$\forall a, \exists B, \forall x, (x \in B \Leftrightarrow x \subseteq a)$$
Back: The power set axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034368-->
END%%
%%ANKI
Basic
How is $x \subseteq a$ rewritten using first-order logic and $\in$?
Back: $\forall t, t \in x \Rightarrow t \in a$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034375-->
END%%
%%ANKI
Basic
How is the power set of set $a$ denoted?
Back: $\mathscr{P}{a}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715688034381-->
END%%
%%ANKI
Basic
How is the power set of set $a$ defined using set-builder notation?
Back: $\{x \mid x \subseteq a\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715900348160-->
END%%
%%ANKI
Basic
Let $A$ be a set. What does $\bigcup \mathscr{P} A$ evaluate to?
Back: $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726976526809-->
END%%
%%ANKI
Basic
Let $A$ be a set. *Why* does $\bigcup \mathscr{P} A = A$?
Back: Because $\mathscr{P} A$ evaluates to the subsets of $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726976526815-->
END%%
%%ANKI
Basic
Let $A$ be a set. What does $\bigcap \mathscr{P} A$ evaluate to?
Back: $\varnothing$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726976526819-->
END%%
%%ANKI
Basic
Let $A$ be a set. *Why* does $\bigcap \mathscr{P} A = \varnothing$?
Back: Because $\varnothing \in \mathscr{P} A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726976526824-->
END%%
## Subset Axioms
For each formula $\_\_\_$ not containing $B$, the following is an axiom: $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
%%ANKI
Basic
What do the subset axioms state?
Back: For each formula $\_\_\_$ not containing $B$, the following is an axiom: $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312858-->
END%%
%%ANKI
Basic
Let $\_\_\_$ be a wff excluding $B$. How is its subset axiom stated in first-order logic?
Back: $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312864-->
END%%
%%ANKI
Basic
The following encodes which set theory axiom(s)? $$\forall t_1, \cdots, \forall t_k, \forall c, \exists B, \forall x, (x \in B \Leftrightarrow x \in c \land \_\_\_)$$
Back: The subset axioms.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312869-->
END%%
%%ANKI
Basic
Which axioms prove the existence of the union of two sets?
Back: The union axiom.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312873-->
END%%
%%ANKI
Basic
Which axioms prove the existence of the intersection of two sets?
Back: The subset axioms.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312876-->
END%%
%%ANKI
Basic
How is the intersection of sets $A$ and $B$ denoted?
Back: $A \cap B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312880-->
END%%
%%ANKI
Basic
How is the intersection of sets $a$ and $b$ defined using set-builder notation?
Back: $\{x \mid x \in a \land x \in b\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312884-->
END%%
%%ANKI
Basic
Which axioms prove the existence of the relative complement of two sets?
Back: The subset axioms.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312888-->
END%%
%%ANKI
Basic
Given sets $A$ and $B$, what does $A - B$ denote?
Back: The relative complement of $B$ in $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312893-->
END%%
%%ANKI
Basic
How is the relative complement of set $B$ in $A$ denoted?
Back: $A - B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312897-->
END%%
%%ANKI
Basic
How is the relative complement of set $b$ in $a$ defined using set-builder notation?
Back: $\{x \mid x \in a \land x \not\in b\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312901-->
END%%
%%ANKI
Cloze
Union is to the {union axiom} whereas intersection is to the {subset axioms}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312905-->
END%%
%%ANKI
Basic
The subset axioms ensure we do not construct what kind of mathematical object?
Back: Classes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074312909-->
END%%
%%ANKI
Basic
How is $\bigcap A$ represented in first-order logic?
Back: $\{x \mid \forall b \in A, x \in b\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007866-->
END%%
%%ANKI
Cloze
{1:$\forall$} is to {2:$\bigcap$} whereas {2:$\exists$} is to {1:$\bigcup$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007868-->
END%%
%%ANKI
Basic
What is the result of $\bigcap \{\{2, 4, 6\}, \{6, 16, 26\}, \{6\}\}$?
Back: $\{6\}$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007870-->
END%%
%%ANKI
Basic
How does $\bigcap A$ adjust as $A$ gets larger?
Back: $\bigcap A$ gets smaller.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007872-->
END%%
%%ANKI
Basic
If $A \subseteq B$, how do $\bigcap A$ and $\bigcap B$ relate?
Back: $\bigcap B \subseteq \bigcap A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007874-->
END%%
%%ANKI
Basic
What class does $\bigcap \varnothing$ correspond to?
Back: The class of all sets.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007876-->
END%%
%%ANKI
Basic
*Why* does $\bigcap \varnothing$ present a problem?
Back: Every set is a member of every member of $\varnothing$ (vacuously).
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007878-->
END%%
%%ANKI
Cloze
{$\bigcap \varnothing$} is to set theory as {division by zero} is to arithmetic.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716309007881-->
END%%
%%ANKI
Cloze
Let $A$ be a set and $C = \bigcap\, \{ x \mid \_\_\_ \}$. Then $C$ {$\subseteq$} $A$ if $A$ satisfies the {entrance requirement}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1729684927446-->
END%%
%%ANKI
Basic
What set operation is shaded green in the following venn diagram?
![[venn-diagram-intersection.png]]
Back: $A \cap B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716395245873-->
END%%
%%ANKI
Basic
What set operation is shaded green in the following venn diagram?
![[venn-diagram-rel-comp.png]]
Back: $A - B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716395245875-->
END%%
%%ANKI
Basic
What set operation is shaded green in the following venn diagram?
![[venn-diagram-symm-diff.png]]
Back: $A \mathop{\triangle} B$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717554445655-->
END%%
%%ANKI
Basic
The "subset axioms" are more accurately classified as what?
Back: An axiom schema.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717368558153-->
END%%
%%ANKI
Basic
What is an axiom schema?
Back: An infinite bundle of axioms.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717368558159-->
END%%
%%ANKI
Basic
Which of the set theory axioms are more accurately described as an axiom schema?
Back: The subset axioms.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1717368558164-->
END%%
%%ANKI
Basic
What does $\bigcap\,\{x\}$ evaluate to?
Back: $x$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1723925562044-->
END%%
%%ANKI
Basic
Let $A, B$ be sets. How is $A \subset B$ defined in FOL?
Back: $A \subset B \Leftrightarrow A \subseteq B \land A \neq B$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1730118488855-->
END%%
## Axiom of Choice
This axiom assumes the existence of some choice function capable of selecting some element from a nonempty set. Note this axiom is controversial because it is non-constructive: there is no procedure we can follow to decide which element was chosen.
%%ANKI
Basic
Why is the Axiom of Choice named the way it is?
Back: It assumes the existence of some choice function.
Reference: “Axiom of Choice,” in _Wikipedia_, July 8, 2024, [https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262](https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262).
<!--ID: 1720964209614-->
END%%
%%ANKI
Basic
In Russell's analogy, why is AoC unnecessary to pick left shoes from an infinite set of shoe pairs?
Back: The choice function can be defined directly, i.e. as "pick left shoe".
Reference: “Axiom of Choice,” in _Wikipedia_, July 8, 2024, [https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262](https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262).
<!--ID: 1720964209620-->
END%%
%%ANKI
Basic
In Russell's analogy, why is AoC necessary to pick socks from an infinite set of sock pairs?
Back: There is no choice function to choose/prefer one sock from/over the other.
Reference: “Axiom of Choice,” in _Wikipedia_, July 8, 2024, [https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262](https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262).
<!--ID: 1720964209624-->
END%%
%%ANKI
Basic
What objects does Russell's analogy use when explaining AoC?
Back: Pairs of shoes vs. pairs of (indistinguishable) socks.
Reference: “Axiom of Choice,” in _Wikipedia_, July 8, 2024, [https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262](https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262).
<!--ID: 1720964209627-->
END%%
### Relation Form
For any relation $R$ there exists a function $F \subseteq R$ with $\mathop{\text{dom}}F = \mathop{\text{dom}}R$.
%%ANKI
Basic
What is AoC an acronym for?
Back: The **A**xiom **o**f **C**hoice.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913526-->
END%%
%%ANKI
Basic
What does the Axiom of Choice (relation form) state?
Back: For any relation $R$ there exists a function $F \subseteq R$ with $\mathop{\text{dom}}F = \mathop{\text{dom}}R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1719681913527-->
END%%
%%ANKI
Basic
AoC (relation form) posits the existence of what mathematical object?
Back: A function.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720964209631-->
END%%
%%ANKI
Basic
Given relation $R$, AoC implies existence of function $F$. How does $F$ relate to $R$?
Back: $F \subseteq R$ and $\mathop{\text{dom}} F = \mathop{\text{dom}} R$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720964209636-->
END%%
### Infinite Cartesian Product Form
For any set $I$ and function $H$ with domain $I$, if $H(i) \neq \varnothing$ for all $i \in I$, then $\bigtimes_{i \in I} H(i) \neq \varnothing$.
%%ANKI
Basic
What does the Axiom of Choice (infinite Cartesian product form) state?
Back: For any set $I$ and function $H$ with domain $I$, if $H(i) \neq \varnothing$ for all $i \in I$, then $\bigtimes_{i \in I} H(i) \neq \varnothing$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720964209640-->
END%%
%%ANKI
Basic
What is the antecedent used in AoC (infinite Cartesian product form)?
Back: $H(i) \neq \varnothing$ for all $i \in I$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720964209644-->
END%%
%%ANKI
Basic
What is the consequent used in AoC (infinite Cartesian product form)?
Back: $\bigtimes_{i \in I} H(i) \neq \varnothing$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1720964209648-->
END%%
## Infinity Axiom
There exists an [[natural-numbers#Inductive Sets|inductive]] set: $$\exists A, [\varnothing \in A \land (\forall a \in A, a^+ \in A)]$$
%%ANKI
Basic
What does the infinity axiom state?
Back: There exists an inductive set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1724486269578-->
END%%
%%ANKI
Cloze
The {infinity} axiom asserts the existence of an {inductive set}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1724486269581-->
END%%
%%ANKI
Basic
State the infinity axiom in FOL.
Back: $\exists A, [\varnothing \in A \land (\forall a \in A, a^+ \in A)]$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1724486269585-->
END%%
## Bibliography
* “Axiom of Choice,” in _Wikipedia_, July 8, 2024, [https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262](https://en.wikipedia.org/w/index.php?title=Axiom_of_choice&oldid=1233242262).
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
* “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
* Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).