notebook/notes/set/trees.md

1461 lines
48 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
title: Trees
TARGET DECK: Obsidian::STEM
FILE TAGS: set::tree
tags:
- graph
- set
- tree
---
## Overview
A **free tree** is a connected, acyclic, undirected [[graphs|graph]]. If an undirected graph is acyclic but possibly disconnected, it is a **forest**.
%%ANKI
Basic
What is a free tree?
Back: A connected, acyclic, undirected graph.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844897-->
END%%
%%ANKI
Basic
What is a forest?
Back: An acyclic undirected graph.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844903-->
END%%
%%ANKI
Basic
What additional property must an undirected graph exhibit to be a forest?
Back: It must be acyclic.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844906-->
END%%
%%ANKI
Basic
What additional properties must an undirected graph exhibit to be a free tree?
Back: It must be acyclic and connected.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844909-->
END%%
%%ANKI
Basic
What additional properties must a forest exhibit to be a free tree?
Back: It must be connected.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844912-->
END%%
%%ANKI
Basic
What additional properties must a free tree exhibit to be a forest?
Back: N/A
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844915-->
END%%
%%ANKI
Basic
If the following isn't a free tree, why not?
![[free-tree.png]]
Back: N/A
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844918-->
END%%
%%ANKI
Basic
If the following isn't a free tree, why not?
![[forest.png]]
Back: Because it is disconnected.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844922-->
END%%
%%ANKI
Basic
If the following isn't a free tree, why not?
![[cyclic-undirected.png]]
Back: Because it contains a cycle.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844926-->
END%%
%%ANKI
Basic
If the following isn't a forest, why not?
![[free-tree.png]]
Back: N/A
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844930-->
END%%
%%ANKI
Basic
If the following isn't a forest, why not?
![[forest.png]]
Back: N/A
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844934-->
END%%
%%ANKI
Basic
If the following isn't a forest, why not?
![[cyclic-undirected.png]]
Back: Because it contains a cycle.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844939-->
END%%
%%ANKI
Basic
How do free trees pictorially relate to forests?
Back: A forest is drawn as one or more free trees.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844943-->
END%%
## Rooted Trees
A **rooted tree** is a free tree in which one vertex is distinguished/blessed as the **root**. We call vertices of rooted trees **nodes**.
Let $T$ be a rooted tree with root $r$. Any node $y$ on the simple path from $r$ to node $x$ is an **ancestor** of $x$. Likewise, $x$ is a **descendant** of $y$. If the last edge on the path from $r$ to $x$ is $\{y, x\}$, $y$ is the **parent** of $x$ and $x$ is a **child** of $y$. Nodes with the same parent are called **siblings**.
A node with no children is an **external node** or **leaf**. A node with at least one child is an **internal node** or **nonleaf**. The number of children of a node is the **degree** of said node. The length of the simple path from the root to a node $x$ is the **depth** of $x$ in $T$. A **level** of a tree consists of all nodes at the same depth. The **height** of a node in a tree is the length of the longest simple path from the node to a leaf.
%%ANKI
Basic
What is a rooted tree?
Back: A free tree in which one of the vertices is distinguished from the others.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844947-->
END%%
%%ANKI
Basic
Is every rooted tree a free tree?
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844951-->
END%%
%%ANKI
Basic
Is every free tree a rooted tree?
Back: No.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844955-->
END%%
%%ANKI
Basic
How many levels exist in a rooted tree of height $h$?
Back: $h + 1$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128242-->
END%%
%%ANKI
Basic
What is the height of a rooted tree with $k$ levels?
Back: $k - 1$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128244-->
END%%
%%ANKI
Basic
Which free trees are not considered rooted trees?
Back: Those without some vertex identified as the root.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844958-->
END%%
%%ANKI
Basic
What distinguishes a node from a vertex?
Back: A node is a vertex of a rooted tree.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844962-->
END%%
%%ANKI
Basic
Is every vertex a node?
Back: No.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844966-->
END%%
%%ANKI
Basic
Is every node a vertex?
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844969-->
END%%
%%ANKI
Cloze
{Nodes} are to rooted trees whereas {vertices} are to free trees.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844973-->
END%%
%%ANKI
Basic
Which of free trees or rooted trees is a more general concept?
Back: Free trees.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844976-->
END%%
%%ANKI
Basic
What does it mean for node $y$ to be an ancestor of node $x$ in a rooted tree?
Back: The simple path from the root to $x$ contains $y$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844980-->
END%%
%%ANKI
Basic
What does it mean for node $y$ to be a descendent of node $x$ in a rooted tree?
Back: The simple path from the root to $y$ contains $x$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844983-->
END%%
%%ANKI
Cloze
In a rooted tree, if $y$ is an {ancestor} of $x$, then $x$ is a {descendant} of $y$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844986-->
END%%
%%ANKI
Basic
What are the ancestors of a rooted tree's root?
Back: Just the root itself.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844989-->
END%%
%%ANKI
Basic
What are the descendants of a rooted tree's root?
Back: Every node in the tree.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844993-->
END%%
%%ANKI
Basic
What are the proper ancestors of a rooted tree's root?
Back: There are none.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136844996-->
END%%
%%ANKI
Basic
What are the proper descendants of a rooted tree's root?
Back: Every node but the root.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845000-->
END%%
%%ANKI
Basic
What does it mean for node $y$ to be a child of node $x$ in a rooted tree?
Back: There exists a path from the root to $y$ such that the last edge is $\{x, y\}$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845004-->
END%%
%%ANKI
Basic
What does it mean for node $y$ to be a parent of node $x$ in a rooted tree?
Back: There exists a path from the root to $x$ such that the last edge is $\{y, x\}$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845009-->
END%%
%%ANKI
Basic
In a rooted tree, how does the concept of "ancestor" relate to "parent"?
Back: Ancestors include parents, parents of parents, etc.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845015-->
END%%
%%ANKI
Basic
In a rooted tree, how does the concept of "descendants" relate to "child"?
Back: Descendants include children, children of children, etc.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845020-->
END%%
%%ANKI
Basic
In a rooted tree, how many ancestors does a node have?
Back: At least one (i.e. itself).
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845026-->
END%%
%%ANKI
Basic
In a rooted tree, how many parents does a node have?
Back: Zero or one.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845031-->
END%%
%%ANKI
Basic
In a rooted tree, how many descendants does a node have?
Back: At least one (i.e. itself).
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845037-->
END%%
%%ANKI
Basic
In a rooted tree, how many children does a node have?
Back: Zero or more.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845044-->
END%%
%%ANKI
Basic
Which nodes in a rooted tree has no parent?
Back: Just the root.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845051-->
END%%
%%ANKI
Basic
In a rooted tree, what are siblings?
Back: Nodes that have the same parent.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845057-->
END%%
%%ANKI
Basic
In a rooted tree, what is an external node?
Back: A node with no children.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845063-->
END%%
%%ANKI
Basic
In a rooted tree, what alternative term is used in favor of "external node"?
Back: A leaf.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845072-->
END%%
%%ANKI
Basic
In a rooted tree, what is an internal node?
Back: A node with at least one child.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845079-->
END%%
%%ANKI
Basic
In a rooted tree, what alternative term is used in favor of "internal node"?
Back: A nonleaf.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845087-->
END%%
%%ANKI
Cloze
{1:External} nodes are to {2:leaf} nodes whereas {2:internal} nodes are to {1:nonleaf} nodes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845093-->
END%%
%%ANKI
Basic
Let $T$ be a rooted tree. What does the degree of a node refer to?
Back: The number of children that node has.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845101-->
END%%
%%ANKI
Basic
Let $T$ be a rooted tree. What does the depth of a node refer to?
Back: The length of the simple path from the root to the node.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845107-->
END%%
%%ANKI
Basic
Let $T$ be a rooted tree. What does a level refer to?
Back: A set of nodes in $T$ that have the same depth.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845114-->
END%%
%%ANKI
Basic
Let $T$ be a rooted tree. What does the height of a node refer to?
Back: The length of the longest simple path from said node to a leaf.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845119-->
END%%
%%ANKI
Basic
What is the height of a rooted tree in terms of "height"?
Back: The height of its root.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845124-->
END%%
%%ANKI
Basic
What is the height of a rooted tree in terms of "depth"?
Back: The largest depth of any node in the tree.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845131-->
END%%
%%ANKI
Basic
Let $T$ be a rooted tree of height $h$. Which nodes have height $0$?
Back: The external nodes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845137-->
END%%
%%ANKI
Basic
Let $T$ be a rooted tree of height $h$. Which nodes have height $h$?
Back: The root node.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845141-->
END%%
%%ANKI
Basic
Let $T$ be a rooted tree of height $h$. Which nodes have depth $0$?
Back: The root.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845145-->
END%%
%%ANKI
Basic
Let $T$ be a rooted tree of height $h$. Which nodes have depth $h$?
Back: The external nodes on the longest simple paths from the root to said nodes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845150-->
END%%
%%ANKI
Basic
What is the height of this rooted tree?
![[rooted-tree.png]]
Back: $4$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845156-->
END%%
%%ANKI
Basic
What is the height of node $4$ in the following rooted tree?
![[rooted-tree.png]]
Back: $1$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845164-->
END%%
%%ANKI
Basic
What is the depth of node $11$ in the following rooted tree?
![[rooted-tree.png]]
Back: $2$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845172-->
END%%
%%ANKI
Basic
Which node has the largest depth in the following rooted tree?
![[rooted-tree.png]]
Back: $9$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845178-->
END%%
%%ANKI
Basic
Which node has the largest height in the following rooted tree?
![[rooted-tree.png]]
Back: $7$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845184-->
END%%
%%ANKI
Basic
Which nodes are on level $3$ in the following rooted tree?
![[rooted-tree.png]]
Back: $1$, $6$, and $5$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845191-->
END%%
%%ANKI
Basic
Which level has the most nodes in the following rooted tree?
![[rooted-tree.png]]
Back: The second level.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845198-->
END%%
%%ANKI
Basic
Which nodes have depth corresponding to this rooted tree's height?
![[rooted-tree.png]]
Back: $9$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845205-->
END%%
%%ANKI
Basic
Which nodes have the most siblings in the following rooted tree?
![[rooted-tree.png]]
Back: $3$, $10$, and $4$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845210-->
END%%
%%ANKI
Basic
Which nodes are ancestors to $12$ in the following rooted tree?
![[rooted-tree.png]]
Back: $12$, $3$, and $7$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845214-->
END%%
%%ANKI
Basic
Which nodes are descendants to $4$ in the following rooted tree?
![[rooted-tree.png]]
Back: $4$, $11$, and $2$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845219-->
END%%
%%ANKI
Basic
Which nodes are parents of $6$ in the following rooted tree?
![[rooted-tree.png]]
Back: $8$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845223-->
END%%
%%ANKI
Basic
Which nodes are children of $7$ in the following rooted tree?
![[rooted-tree.png]]
Back: $3$, $10$, and $4$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845227-->
END%%
%%ANKI
Basic
What are the internal nodes of the following rooted tree?
![[rooted-tree.png]]
Back: $7$, $3$, $4$, $12$, $8$, and $5$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845231-->
END%%
%%ANKI
Basic
What are the external nodes of the following rooted tree?
![[rooted-tree.png]]
Back: $10$, $11$, $2$, $1$, $6$, and $9$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845235-->
END%%
%%ANKI
Basic
What level does node $6$ reside on in the following rooted tree?
![[rooted-tree.png]]
Back: $3$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1711136845240-->
END%%
### Ordered Trees
An **ordered tree** is a rooted tree in which the children of each node are ordered.
%%ANKI
Basic
What is an ordered tree?
Back: A rooted tree in which the children of each node are ordered.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712406878904-->
END%%
%%ANKI
Basic
Which of ordered trees or rooted trees is the more general concept?
Back: Rooted trees.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712406878909-->
END%%
%%ANKI
Basic
Which of free trees or ordered trees is the more general concept?
Back: Free trees.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712406878912-->
END%%
%%ANKI
Basic
Is every rooted tree an ordered tree?
Back: No.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712406878915-->
END%%
%%ANKI
Basic
Is every ordered tree a rooted tree?
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712406878917-->
END%%
%%ANKI
Basic
The following two trees are equivalent when considered as what (most specific) kind of trees?
![[ordered-rooted-tree-cmp.png]]
Back: Rooted trees.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712407152755-->
END%%
%%ANKI
Basic
The following two trees are different when considered as what (most general) kind of trees?
![[ordered-rooted-tree-cmp.png]]
Back: Ordered trees.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712407152763-->
END%%
%%ANKI
Basic
Considered as rooted trees, are the following trees the same?
![[ordered-binary-tree-cmp.png]]
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712409466660-->
END%%
%%ANKI
Basic
Considered as ordered trees, are the following trees the same?
![[ordered-binary-tree-cmp.png]]
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712409466670-->
END%%
%%ANKI
Basic
Considered as positional trees, are the following trees the same?
![[ordered-binary-tree-cmp.png]]
Back: No.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714089436122-->
END%%
%%ANKI
Basic
Considered as binary trees, are the following trees the same?
![[ordered-binary-tree-cmp.png]]
Back: No.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712409466676-->
END%%
%%ANKI
Basic
Why are these two binary trees not the same?
![[ordered-binary-tree-cmp.png]]
Back: `5` is a left child in the first tree but a right child in the second.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712409466682-->
END%%
### Positional Trees
A **positional tree** is a rooted tree in which each child is labeled with a specific positive integer. A **$k$-ary tree** is a positional tree with at most $k$ children/labels. A binary tree is a $2$-ary tree.
A $k$-ary tree is **full** if every node has degree $0$ or $k$. A $k$-ary tree is **perfect** if all leaves have the same depth and all internal nodes have degree $k$. A $k$-ary tree is **complete** if the last level is not filled but all leaves have the same depth and are leftmost arranged.
%%ANKI
Basic
Why aren't terms "complete/perfect" and "nearly complete/complete" quite synonymous?
Back: In the former, "perfect" trees are a subset of "complete" trees.
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
<!--ID: 1714088438740-->
END%%
%%ANKI
Basic
What distinguishes a positional tree from a $k$-ary tree?
Back: A $k$-ary tree cannot have child with label $> k$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128216-->
END%%
%%ANKI
Basic
Is a $k$-ary tree a positional tree?
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714089436130-->
END%%
%%ANKI
Basic
Is a positional tree a $k$-ary tree?
Back: Not necessarily.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714089436134-->
END%%
%%ANKI
Basic
What distinguishes positional trees from ordered trees?
Back: Children of the former are labeled with a distinct positive integer.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128219-->
END%%
%%ANKI
Basic
Is the notion of absent children a concept in ordered trees?
Back: No.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714088438749-->
END%%
%%ANKI
Basic
Is the notion of absent children a concept in positional trees?
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714088438754-->
END%%
%%ANKI
Basic
Is the notion of absent children a concept in $k$-ary trees?
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714088438759-->
END%%
%%ANKI
Basic
What is a positional tree?
Back: A rooted tree in which each child is labeled with a distinct positive integer.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128220-->
END%%
%%ANKI
Basic
What is a $k$-ary tree?
Back: A positional tree with labels greater than $k$ missing.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128223-->
END%%
%%ANKI
Basic
Which of positional trees or $k$-ary trees are more general?
Back: The positional tree.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128225-->
END%%
%%ANKI
Basic
Which of positional trees or ordered trees are more general?
Back: N/A.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714088438763-->
END%%
%%ANKI
Is the concept of fullness related to positional trees or $k$-ary trees?
Back: $k$-ary trees.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Is the concept of perfectness related to positional trees or $k$-ary trees?
Back: $k$-ary trees.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128229-->
END%%
%%ANKI
Basic
Is the concept of completeness related to positional trees or $k$-ary trees?
Back: $k$-ary trees.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714088723844-->
END%%
%%ANKI
Basic
What does it mean for a $k$-ary tree to be full?
Back: Each node has $0$ or $k$ children.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128231-->
END%%
%%ANKI
Basic
What degrees are permitted in a full $k$-ary tree?
Back: $0$ or $k$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128233-->
END%%
%%ANKI
Basic
What degrees are permitted in a perfect $k$-ary tree?
Back: $0$ or $k$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128234-->
END%%
%%ANKI
Basic
What does it mean for a $k$-ary tree to be perfect?
Back: All leaves have the same depth and all internal nodes have degree $k$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128236-->
END%%
%%ANKI
Basic
What is the degree of an internal node in a perfect $k$-ary tree?
Back: $k$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128239-->
END%%
%%ANKI
Basic
What is the degree of an external node in a perfect $k$-ary tree?
Back: $0$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128241-->
END%%
%%ANKI
Basic
What recursive definition describes the number of nodes in each level of a perfect $k$-ary tree?
Back: $a_n = k \cdot a_{n-1}$ with $a_0 = 1$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
<!--ID: 1713118128248-->
END%%
%%ANKI
Basic
How many nodes are in a perfect $k$-ary tree of height $h$?
Back: $$\frac{1 - k^{h+1}}{1 - k}$$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
<!--ID: 1713118128249-->
END%%
%%ANKI
Basic
How many internal nodes are in a perfect $k$-ary tree of height $h$?
Back: $$\frac{1 - k^h}{1 - k}$$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
<!--ID: 1714080353459-->
END%%
%%ANKI
Basic
How many external nodes are in a perfect $k$-ary tree of height $h$?
Back: $k^h$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
<!--ID: 1714080353455-->
END%%
%%ANKI
Basic
How many nodes are on level $d$ of a perfect $k$-ary tree?
Back: $k^d$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
<!--ID: 1714080353462-->
END%%
%%ANKI
Basic
What kind of sequence describes the number of nodes in a perfect $k$-ary tree?
Back: A geometric sequence.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
<!--ID: 1713118128251-->
END%%
%%ANKI
Basic
What is the common ratio of the geometric sequence used to count nodes of a perfect $k$-ary tree?
Back: $k$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
<!--ID: 1713118128253-->
END%%
%%ANKI
Basic
What does it mean for a $k$-ary tree to be complete?
Back: All levels, except maybe the last, are filled. All leaves have the same depth and are leftmost arranged.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714080353480-->
END%%
%%ANKI
Basic
How is the minimum number of nodes in a complete $k$-ary tree of height $h$ calculated in terms of perfect $k$-ary trees?
Back: As "the number of nodes in a perfect $k$-ary tree of height $h - 1$" plus $1$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714082676018-->
END%%
%%ANKI
Basic
What is the maximum number of nodes in a complete binary tree of height $h$?
Back: $2^{h+1} - 1$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714082676014-->
END%%
%%ANKI
Basic
How is the maximum number of nodes in a complete $k$-ary tree of height $h$ calculated in terms of perfect $k$-ary trees?
Back: As "the number of nodes in a perfect $k$-ary tree of height $h$".
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714082676022-->
END%%
%%ANKI
Basic
How many internal nodes are in a complete $k$-ary tree of $n$ nodes?
Back: $\lceil (n - 1) / k \rceil$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714349367630-->
END%%
%%ANKI
Basic
What value of $k$ is used in the following description of a complete $k$-ary tree?
$$\begin{array}{c|c|c}
n & \text{external} & \text{internal} \\
\hline
1 & 1 & 0 \\
2 & 1 & 1 \\
3 & 2 & 1 \\
4 & 3 & 1 \\
5 & 4 & 1 \\
6 & 4 & 2 \\
7 & 5 & 2 \\
8 & 6 & 2
\end{array}$$
Back: $4$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714349367637-->
END%%
%%ANKI
Basic
What value of $k$ is used in the following description of a complete $k$-ary tree?
$$\begin{array}{c|c|c}
n & \text{external} & \text{internal} \\
\hline
1 & 1 & 0 \\
2 & 1 & 1 \\
3 & 2 & 1 \\
4 & 2 & 2 \\
5 & 3 & 2 \\
6 & 3 & 3 \\
7 & 4 & 3 \\
8 & 4 & 4
\end{array}$$
Back: $2$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714349367640-->
END%%
%%ANKI
Basic
When does the number of external nodes increment in a growing $k$-ary tree?
Back: When the next node added already has a sibling.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714349367644-->
END%%
%%ANKI
Basic
When does the number of external nodes remain static in a growing $k$-ary tree?
Back: When the next node added has no sibling.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714349367647-->
END%%
%%ANKI
Basic
When does the number of internal nodes increment in a growing $k$-ary tree?
Back: When the next node added has no sibling.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714349367651-->
END%%
%%ANKI
Basic
When does the number of internal nodes remain static in a growing $k$-ary tree?
Back: When the next node added already has a sibling.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714349367655-->
END%%
#### Binary Trees
A **binary tree** $T$ is a structure defined on a finite set of nodes that either
* contains no nodes, or
* is composed of three disjoint sets of nodes: a **root** node, a **left subtree**, and a **right subtree**.
%%ANKI
Basic
Is a binary tree a $k$-ary tree?
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714089436138-->
END%%
%%ANKI
Basic
Is a binary tree a positional tree?
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Is a binary tree an ordered tree?
Back: No.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714089436144-->
END%%
%%ANKI
Basic
What does it mean for a binary tree to be full?
Back: Each node has $0$ or $2$ children.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128213-->
END%%
%%ANKI
Basic
What does it mean for a binary tree to be perfect?
Back: Each leaf has the same depth and all internal nodes have degree $2$.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714081594570-->
END%%
%%ANKI
Basic
Is a perfect binary tree considered full?
Back: Yes.
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
<!--ID: 1714088438720-->
END%%
%%ANKI
Basic
Is a full binary tree considered perfect?
Back: Not necessarily.
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
<!--ID: 1714088438726-->
END%%
%%ANKI
Basic
Is a full binary tree considered complete?
Back: Not necessarily.
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
<!--ID: 1714088438729-->
END%%
%%ANKI
Basic
Is a complete binary tree considered full?
Back: Not necessarily.
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
<!--ID: 1714088438733-->
END%%
%%ANKI
Basic
What alternative term is sometimes used in favor of a "perfect binary tree"?
Back: A "complete binary tree".
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
<!--ID: 1714088438737-->
END%%
%%ANKI
Basic
What alternative term is sometimes used in favor over a "complete binary tree"?
Back: Some authors may say "nearly complete" if the last level isn't completely filled.
Reference: “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
<!--ID: 1714088438744-->
END%%
%%ANKI
Basic
What degrees are permitted in a full binary tree?
Back: $0$ or $2$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714081594576-->
END%%
%%ANKI
Basic
What degrees are permitted in a perfect binary tree?
Back: $0$ or $2$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714081594579-->
END%%
%%ANKI
Basic
What category of rooted tree does a binary tree fall under?
Back: A positional tree or $k$-ary tree.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714081594582-->
END%%
%%ANKI
Basic
Is a binary tree a positional tree?
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1713118128227-->
END%%
%%ANKI
Basic
How many nodes are in a perfect binary tree of height $h$?
Back: $2^{h+1} - 1$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
<!--ID: 1713118128255-->
END%%
%%ANKI
Basic
How many internal nodes are in a perfect binary tree of height $h$?
Back: $2^h - 1$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
<!--ID: 1714080353472-->
END%%
%%ANKI
Basic
How many external nodes are in a perfect binary tree of height $h$?
Back: $2^h$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
<!--ID: 1714080353469-->
END%%
%%ANKI
Basic
How many nodes are on level $d$ of a perfect binary tree?
Back: $2^d$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
<!--ID: 1714080353465-->
END%%
%%ANKI
Basic
How does the number of internal nodes compare to the number of external nodes in a perfect binary tree?
Back: There is one more external node than internal node.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
<!--ID: 1714080353476-->
END%%
%%ANKI
Basic
Is the following a perfect binary tree?
![[perfect-tree.png]]
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714180419777-->
END%%
%%ANKI
Basic
Is the following a complete binary tree?
![[perfect-tree.png]]
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714180419781-->
END%%
%%ANKI
Basic
Is the following a full binary tree?
![[perfect-tree.png]]
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714180419784-->
END%%
%%ANKI
Basic
Is the following a perfect binary tree?
![[complete-tree.png]]
Back: No.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714180419787-->
END%%
%%ANKI
Basic
Is the following a complete binary tree?
![[complete-tree.png]]
Back: Yes.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714180419789-->
END%%
%%ANKI
Basic
Is the following a full binary tree?
![[complete-tree.png]]
Back: No.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714180419793-->
END%%
%%ANKI
Basic
Is the following a perfect binary tree?
![[non-complete-tree.png]]
Back: No.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714180419802-->
END%%
%%ANKI
Basic
Is the following a complete binary tree?
![[non-complete-tree.png]]
Back: No.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714180419809-->
END%%
%%ANKI
Basic
Is the following a full binary tree?
![[non-complete-tree.png]]
Back: No.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714180419813-->
END%%
%%ANKI
Basic
What is the minimum number of nodes in a complete binary tree of height $h$?
Back: $2^h$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714082676010-->
END%%
%%ANKI
Basic
What is the base case used in the recursive definition of a binary tree?
Back: The empty set.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712409466593-->
END%%
%%ANKI
Basic
What recurrence is used in the recursive definition of a binary tree?
Back: A binary tree is composed of a root node, a left subtree, and a right subtree.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712409466606-->
END%%
%%ANKI
Basic
How should the nil constructor of an inductive binary tree, say `Tree`, be defined?
Back:
```lean
| constructor : Tree α
```
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: lean
<!--ID: 1712409466615-->
END%%
%%ANKI
Basic
How should the non-nil constructor of an inductive binary tree, say `Tree`, be defined?
Back:
```lean
| constructor : α → Tree α → Tree α → Tree α
```
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: lean
<!--ID: 1712409466621-->
END%%
%%ANKI
Basic
In the following binary tree type, what name is given to the first argument of `node`?
```lean
inductive Tree α where
| nil : Tree α
| node : α → Tree α → Tree α → Tree α
```
Back: The root node.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: lean
<!--ID: 1712409466627-->
END%%
%%ANKI
Basic
In the following binary tree type, what name is given to the second argument of `node`?
```lean
inductive Tree α where
| nil : Tree α
| node : α → Tree α → Tree α → Tree α
```
Back: The left subtree.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: lean
<!--ID: 1712409466634-->
END%%
%%ANKI
Basic
In the following binary tree type, what name is given to the third argument of `node`?
```lean
inductive Tree α where
| nil : Tree α
| node : α → Tree α → Tree α → Tree α
```
Back: The right subtree.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: lean
<!--ID: 1712409466639-->
END%%
%%ANKI
Basic
Given the following binary tree implementation, how do you construct an empty tree?
```lean
inductive Tree α where
| nil : Tree α
| node : α → Tree α → Tree α → Tree α
```
Back: `nil`
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: lean
<!--ID: 1712409466643-->
END%%
%%ANKI
Basic
Given the following binary tree implementation, how do you construct a tree with root `a`, left child `b`, and right child `c`?
```lean
inductive Tree α where
| nil : Tree α
| node : α → Tree α → Tree α → Tree α
```
Back: `node 'a' (node 'b' nil nil) (node 'c' nil nil)`
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: lean
<!--ID: 1712409466648-->
END%%
%%ANKI
Basic
Why isn't a binary tree considered an ordered tree?
Back: A left child is distinct from a right child, even if the child is the same in both cases.
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1712409466653-->
END%%
%%ANKI
Basic
How many internal nodes are in a complete binary tree of $n$ nodes?
Back: $\lceil (n - 1) / 2 \rceil = \lfloor n / 2 \rfloor$
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1714349367662-->
END%%
## Bibliography
* “Binary Tree,” in _Wikipedia_, March 13, 2024, [https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees](https://en.wikipedia.org/w/index.php?title=Binary_tree&oldid=1213529508#Types_of_binary_trees).
* Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).