15 KiB
title | TARGET DECK | FILE TAGS | tags | |||
---|---|---|---|---|---|---|
Heaps | Obsidian::STEM | data_structure::heap |
|
Overview
The binary heap data structure is an array object that can be viewed as a trees#Positional Trees.
The primary function used to maintain the max-heap property is MAX_HEAPIFY_DOWN
. This function assumes the left and right- subtrees at a given node are max heaps but that the current node may be smaller than its children. An analagous function and assumptions exist for MIN_HEAPIFY_DOWN
.
inline int left_child(int i) { return (i << 1) + 1; }
inline int right_child(int i) { return (i << 1) + 2; }
void max_heapify_down(int n, int H[static n], int i) {
while (true) {
int lc = left_child(i);
int rc = right_child(i);
int next = i;
if (lc < n && H[next] < H[lc]) {
next = lc;
}
if (rc < n && H[next] < H[rc]) {
next = rc;
}
if (next == i) {
return;
}
swap(H, i, next);
i = next;
}
}
void build_max_heap(int n, int H[static n]) {
for (int i = n / 2 - 1; i >= 0; --i) {
max_heapify_down(n, H, i);
}
}
%%ANKI Cloze A binary heap is an {array} that can be viewed as a {binary tree}. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is the following a valid binary heap? ! Back: Yes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is the following a valid binary heap? ! Back: Yes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is the following a valid binary heap? ! Back: No. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Why can't the following be a binary heap? ! Back: A heap is equivalently viewed as a complete binary tree. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What two sizes are associated with binary heaps? Back: The size of the heap and the capacity of the underlying array. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What are the two kinds of binary heaps? Back: Max-heaps and min-heaps. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What is the max-heap property? Back: Every parent node is greater than or equal to its children in value. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Where is the largest element of a max-heap? Back: At the root. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Where is the smallest element of a max-heap? Back: At the leaves. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What is the min-heap property? Back: Every parent node is less than or equal to its children in value. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Where is the smallest element of a min-heap? Back: At the root. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Where is the largest element of a min-heap? Back: At the leaves. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic How is the following binary heap viewed as an array? ! Back: ! Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic How is the following binary heap instead viewed as a binary tree? ! Back: ! Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What kind of binary heap is the following? ! Back: A max-heap. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What preconditions must hold before invoking MAX_HEAPIFY_DOWN
on a node?
Back: The node's left and right subtrees must be max-heaps.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
When is MAX_HEAPIFY_DOWN
a no-op?
Back: When the current node is already larger than both its children.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
If not a no-op, which child should MAX_HEAPIFY_DOWN
swap its current value with?
Back: The larger of its two children.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Given a heap of height h
, why is MAX_HEAPIFY_DOWN
's worst case runtime O(h)
?
Back: Each invocation may violate the max-heap property of a child node.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the runtime of MAX_HEAPIFY_DOWN
?
Back: O(h)
where h
is the height of the heap.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the result of calling MAX_HEAPIFY_DOWN
on the highlighted node?
!
Back:
!
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the runtime of MIN_HEAPIFY_DOWN
?
Back: O(h)
where h
is the height of the heap.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What preconditions must hold before invoking MIN_HEAPIFY_DOWN
on a node?
Back: The node's left and right subtrees must be min-heaps.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
When is MIN_HEAPIFY_DOWN
a no-op?
Back: When the current node is already smaller than both its children.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
If not a no-op, which child should MIN_HEAPIFY_DOWN
swap its current value with?
Back: The smaller of its two children.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Given a heap of height h
, why is MIN_HEAPIFY_DOWN
's worst case runtime O(h)
?
Back: Each invocation may violate the min-heap property of a child node.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What does the "heapify" operation of a heap refer to? Back: Repeatedly swapping a node's value with a child until the heap property is achieved. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
How many internal nodes does a binary heap of size n
have?
Back: \lfloor n / 2 \rfloor
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
How many internal nodes precede the first external node of a heap of size n
?
Back: \lfloor n / 2 \rfloor
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What is the height of a binary heap defined? Back: The height of the heap's root when viewed as a complete binary tree. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the input of MAX_HEAPIFY_DOWN
?
Back: The index of a node in the target heap.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the input of BUILD_MAX_HEAP
?
Back: An array.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the runtime of BUILD_MAX_HEAP
on an array of n
elements?
Back: O(n)
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
How is the BUILD_MAX_HEAP
function usually implemented?
Back: As calling heapify on each internal node.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which node does BUILD_MAX_HEAP
start iterating on?
Back: The last internal node.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Why does BUILD_MAX_HEAP
"ignore" the external nodes of a heap?
Back: Because they are already max-heaps of size 1
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Given heap H[0:n-1]
, what is BUILD_MAX_HEAP
's loop invariant?
Back: Each node in H[i+1:n-1]
is the root of a max-heap.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is initialization of BUILD_MAX_HEAP
's loop invariant?
Back: Every external node is the root of a max-heap.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is maintenance of BUILD_MAX_HEAP
's loop invariant?
Back: Calling MAX_HEAPIFY_DOWN
maintains the max-heap property of the current node.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
In pseudocode, how is BUILD_MAX_HEAP
implemented?
Back:
void BUILD_MAX_HEAP(int n, int H[static n]) {
for (int i = (n / 2) - 1; i >= 0; --i) {
MAX_HEAPIFY_DOWN(i, H);
}
}
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the input of BUILD_MIN_HEAP
?
Back: An array.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the runtime of BUILD_MIN_HEAP
on an array of n
elements?
Back: O(n)
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
How is the BUILD_MIN_HEAP
function usually implemented?
Back: As calling heapify on each internal node.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which node does BUILD_MIN_HEAP
start iterating on?
Back: The last internal node.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Why does BUILD_MIN_HEAP
"ignore" the external nodes of a heap?
Back: Because they are already min-heaps of size 1
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Given heap H[0:n-1]
, what is BUILD_MIN_HEAP
's loop invariant?
Back: Each node in H[i+1:n-1]
is the root of a min-heap.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is initialization of BUILD_MIN_HEAP
's loop invariant?
Back: Every external node is the root of a min-heap.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is maintenance of BUILD_MIN_HEAP
's loop invariant?
Back: Calling MIN_HEAPIFY_DOWN
maintains the min-heap property of the current node.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
In pseudocode, how is BUILD_MIN_HEAP
implemented?
Back:
void BUILD_MIN_HEAP(int n, int H[static n]) {
for (int i = (n / 2) - 1; i >= 0; --i) {
MIN_HEAPIFY_DOWN(i, H);
}
}
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
BUILD_MIN_HEAP
can sort arrays of what sizes?
Back: \leq 2
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
Bibliography
- Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).