notebook/notes/lambda-calculus/alpha-conversion.md

318 lines
16 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
title: α-conversion
TARGET DECK: Obsidian::STEM
FILE TAGS: λ-calculus
tags:
- λ-calculus
---
## Overview
Let $\lambda$-term $P$ contain an occurrence of $\lambda x. M$, and let $y \not\in FV(M)$. The act of replacing this occurrence of $\lambda x. M$ with $\lambda y. [y/x]M$ is called a **change of bound variable** or an $\alpha$-conversion in $P$.
If $P$ can be changed to $\lambda$-term $Q$ by a finite series of changes of bound variables, we shall say **$P$ is congruent to $Q$**, or **$P$ $\alpha$-converts to $Q$**, or $P \equiv_\alpha Q$.
%%ANKI
Basic
If $P \equiv Q$, does $P \equiv_\alpha Q$?
Back: Yes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717687744134-->
END%%
%%ANKI
Basic
If $P \equiv_\alpha Q$, does $P \equiv Q$?
Back: Not necessarily.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717687744141-->
END%%
%%ANKI
Basic
$\alpha$-conversion is most related to what kind of $\lambda$-term?
Back: Abstractions.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717687744144-->
END%%
%%ANKI
Basic
What property must $y$ satisfy for $\lambda x. M \equiv_\alpha \lambda y. M$?
Back: $y \not\in FV(M)$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717687744147-->
END%%
%%ANKI
Basic
What *kind* of conversion is a change of bound variable?
Back: An $\alpha$-conversion.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717687744150-->
END%%
%%ANKI
Basic
Given $\lambda$-terms $P$ and $Q$, what does it mean for $P$ to be congruent to $Q$?
Back: $P \equiv_\alpha Q$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717687744154-->
END%%
%%ANKI
Basic
Given $\lambda$-terms $P$ and $Q$, $P \equiv_\alpha Q$ if and only if what?
Back: $P$ can be changed to $Q$ with a finite number of changes of bound variables.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717687744157-->
END%%
%%ANKI
Basic
Is the following identity true? $$\lambda x y. x(xy) \equiv \lambda x. (\lambda y. x(xy))$$
Back: Yes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717687744162-->
END%%
%%ANKI
Basic
Is the following identity true? $$\lambda x y. x(xy) \equiv_\alpha \lambda x. (\lambda y. x(xy))$$
Back: Yes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717687744166-->
END%%
%%ANKI
Basic
Is the following identity true? $$\lambda x y. x(xy) \equiv \lambda u v. u(uv))$$
Back: No.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717687744169-->
END%%
%%ANKI
Basic
Is the following identity true? $$\lambda x y. x(xy) \equiv_\alpha \lambda u v. u(uv))$$
Back: Yes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717687744173-->
END%%
%%ANKI
Cloze
$\alpha$-conversion is known as a change of {bound variables}.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717687744176-->
END%%
%%ANKI
Basic
If $P \equiv_\alpha Q$, what can be said about the free variables of $P$ and $Q$?
Back: $FV(P) = FV(Q)$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717848027572-->
END%%
%%ANKI
Basic
What does it mean for $\equiv_\alpha$ to be reflexive?
Back: $P \equiv_\alpha P$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717848027575-->
END%%
%%ANKI
Basic
What does it mean for $\equiv_\alpha$ to be symmetric?
Back: $P \equiv_\alpha Q \Rightarrow Q \equiv_\alpha P$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717848027579-->
END%%
%%ANKI
Basic
What does it mean for $\equiv_\alpha$ to be transitive?
Back: $P \equiv_\alpha Q \land Q \equiv_\alpha R \Rightarrow P \equiv_\alpha R$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717848027582-->
END%%
%%ANKI
Basic
What three properties make $\equiv_\alpha$ an equivalence relation?
Back: $\equiv_\alpha$ is reflexive, symmetric, and transitive.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717848027586-->
END%%
Let $x$, $y$, and $v$ be distinct variables. Then
* $v \not\in FV(M) \Rightarrow [P/v][v/x]M \equiv_\alpha [P/x]M$
* $v \not\in FV(M) \Rightarrow [x/v][v/x]M \equiv_\alpha M$
* $y \not\in FV(P) \Rightarrow [P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$
%%ANKI
Basic
$[N/x]M$ corresponds to which equivalence-transformation inference rule?
Back: Substitution.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717449830572-->
END%%
%%ANKI
Basic
$[P/v][v/x]M \equiv [P/x]M$ corresponds to which equivalence-transformation inference rule?
Back: Transitivity.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717449830601-->
END%%
%%ANKI
Basic
Rewrite $(E_u^x)_v^x$ using $\lambda$-calculus syntax.
Back: $[v/x][u/x]E$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717449830608-->
END%%
%%ANKI
Basic
Rewrite $[x/v][v/x]M$ using equivalence-transformation syntax.
Back: $(M^x_v)^v_x$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717449830614-->
END%%
%%ANKI
Basic
$[P/v][v/x]M \equiv_\alpha [P/x]M$ is necessary for what condition?
Back: $v \not\in FV(M)$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717855810777-->
END%%
%%ANKI
Basic
What happens if the antecedent is false in $v \not\in FV(M) \Rightarrow [P/v][v/x]M \equiv_\alpha [P/x]M$?
Back: The LHS of the identity has more occurrences of $P$ than the right.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717855810781-->
END%%
%%ANKI
Basic
If $v \in FV(M)$ and $x \not\in FV(M)$, does $[P/v][v/x]M \equiv_\alpha [P/x]M$?
Back: No.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717850495760-->
END%%
%%ANKI
Basic
If $v \not\in FV(M)$ and $x \in FV(M)$, does $[P/v][v/x]M \equiv_\alpha [P/x]M$?
Back: Yes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717850495763-->
END%%
%%ANKI
Basic
If $v \not\in FV(M)$, what simpler term is $[P/v][v/x]M$ congruent to?
Back: $[P/x]M$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717850495766-->
END%%
%%ANKI
Basic
If $v \not\in FV(M)$ and $x \in FV(M)$, does $[x/v][v/x]M \equiv_\alpha M$?
Back: Yes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717850495775-->
END%%
%%ANKI
Basic
If $v \not\in FV(M)$ and $x \in FV(M)$, does $[v/x][x/v]M \equiv_\alpha M$?
Back: No.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717850495778-->
END%%
%%ANKI
Basic
If $v \in FV(M)$ and $x \not\in FV(M)$, does $[v/x][x/v]M \equiv_\alpha M$?
Back: Yes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717850495782-->
END%%
%%ANKI
Basic
If $v \in FV(M)$ and $x \not\in FV(M)$, does $[x/v][v/x]M \equiv_\alpha M$?
Back: No.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717850495785-->
END%%
%%ANKI
Basic
If $y \not\in FV(P)$, "commuting" substitution in $[P/x][Q/y]M$ yields what congruent term?
Back: $[([P/x]Q)/y][P/x]M$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717853380814-->
END%%
%%ANKI
Basic
$[P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$ is necessary for what condition?
Back: $y \not\in FV(P)$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717855810784-->
END%%
%%ANKI
Basic
What happens if the antecedent is false in $y \not\in FV(P) \Rightarrow [P/x][Q/y]M \equiv_\alpha [([P/x]Q)/y][P/x]M$?
Back: $y$ is subbed in $M$ on the LHS but subbed in both $P$ and $M$ on the RHS.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717855810787-->
END%%
%%ANKI
Basic
Free occurrences of $x$ are substituted in which $\lambda$-terms of $[P/x][Q/y]M$?
Back: $Q$ and $M$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717855810790-->
END%%
%%ANKI
Basic
Free occurrences of $y$ are substituted in which $\lambda$-terms of $[P/x][Q/y]M$?
Back: $M$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717855810794-->
END%%
%%ANKI
Basic
Free occurrences of $x$ are substituted in which $\lambda$-terms of $[([P/x]Q)/y][P/x]M$?
Back: $Q$ and $M$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717855810798-->
END%%
%%ANKI
Basic
Free occurrences of $y$ are substituted in which $\lambda$-terms of $[([P/x]Q)/y][P/x]M$?
Back: $P$ and $M$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1717855810802-->
END%%
## Bibliography
* Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).