20 KiB
title | TARGET DECK | FILE TAGS | tags | ||
---|---|---|---|---|---|
Equivalence Transformation | Obsidian::STEM | logic::equiv-trans |
|
Overview
Equivalence-transformation refers to a class of calculi for manipulating propositions derived from negation (\neg
), conjunction (\land
), disjunction (\lor
), implication (\Rightarrow
), and equality (=
). Gries covers two in "The Science of Programming": a system of evaluation and a formal system. The system of evaluation mirrors how a computer processes instructions, at least in an abstract sense. The formal system serves as a theoretical framework for reasoning about propositions and their transformations without resorting to "lower-level" operations like substitution.
%%ANKI Basic Who is the author of "The Science of Programming"? Back: David Gries Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What are the constant propositions?
Back: T
and F
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What are the basic propositional logical operators?
Back: \neg
, \land
, \lor
, \Rightarrow
, and \Leftrightarrow
/=
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Cloze
Gries replaces logical operator {\Leftrightarrow
} in favor of {=
}.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
How does Lean define propositional equality?
Back: Expressions a
and b
are propositionally equal iff a = b
is true.
Reference: Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
Tags: lean
END%%
%%ANKI
Basic
How does Lean define propext
?
Back:
axiom propext {a b : Prop} : (a ↔ b) → (a = b)
Reference: Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d. Tags: lean
END%%
%%ANKI
Basic
What Lean theorem justifies Gries' choice of =
over \Leftrightarrow
?
Back: propext
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: lean
END%%
%%ANKI
Basic
What name is given to \land
operands?
Back: Conjuncts
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What name is given to \lor
operands?
Back: Disjuncts
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What name is given to operand a
in a \Rightarrow b
?
Back: The antecedent
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What name is given to operand b
in a \Rightarrow b
?
Back: The consequent
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
Is (b \land c)
well-defined in \{(b, T), (c, F)\}
?
Back: Yes
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
Is (b \lor d)
well-defined in \{(b, T), (c, F)\}
?
Back: No
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What C operator corresponds to \neg
?
Back: !
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
END%%
%%ANKI
Basic
What C operator corresponds to \land
?
Back: There isn't one.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
END%%
%%ANKI
Basic
What C operator corresponds to \lor
?
Back: There isn't one.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
END%%
%%ANKI
Basic
What C operator corresponds to \Rightarrow
?
Back: There isn't one.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
END%%
%%ANKI
Basic
What C operator corresponds to \Leftrightarrow
?
Back: ==
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
END%%
%%ANKI
Basic
What proposition represents states \{(b, T)\}
and \{(c, F)\}
?
Back: b \lor \neg c
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What set of states does a \land b
represent?
Back: The set containing just state \{(a, T), (b, T)\}
.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is sloppy about phrase "the states in b \lor \neg c
"?
Back: b \lor \neg c
is not a set but a representation of a set (of states).
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is the weakest proposition?
Back: T
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What set of states does T
represent?
Back: The set of all states.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is the strongest proposition?
Back: F
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What set of states does F
represent?
Back: The set of no states.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What does a proposition represent? Back: The set of states in which it is true. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
When is p
stronger than q
?
Back: When p \Rightarrow q
.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
When is p
weaker than q
?
Back: When q \Rightarrow p
.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic A proposition is well-defined with respect to what? Back: A state to evaluate against. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
Why is b \land c
stronger than b \lor c
?
Back: The former represents a subset of the states the latter represents.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What is a state? Back: A function mapping identifiers to values. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What are the two calculi Gries describes equivalence-transformation with? Back: A formal system and a system of evaluation. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
Equivalence Schemas
A proposition is said to be a tautology if it evaluates to T
in every state it is well-defined in. We say propositions E1
and E2
are equivalent if E1 = E2
is a tautology. In this case, we say E1 = E2
is an equivalence.
%%ANKI Basic What does it mean for a proposition to be a tautology? Back: That the proposition is true in every state it is well-defined in. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic The term "equivalent" refers to a comparison between what two objects? Back: Propositions. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What does it mean for two propositions to be equivalent?
Back: Given propositions E1
and E2
, it means E1 = E2
is a tautology.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is an equivalence?
Back: Given propositions E1
and E2
, tautology E1 = E2
.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
- Commutative Laws
(E1 \land E2) = (E2 \land E1)
(E1 \lor E2) = (E2 \lor E1)
(E1 = E2) = (E2 = E1)
%%ANKI
Basic
Which of the basic logical operators do the commutative laws apply to?
Back: \land
, \lor
, and =
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What do the commutative laws allow us to do? Back: Reorder operands. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is the commutative law of e.g. \land
?
Back: E1 \land E2 = E2 \land E1
END%%
- Associative Laws
E1 \land (E2 \land E3) = (E1 \land E2) \land E3
E1 \lor (E2 \lor E3) = (E1 \lor E2) \lor E3
%%ANKI
Basic
Which of the basic logical operators do the associative laws apply to?
Back: \land
and \lor
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What do the associative laws allow us to do? Back: Remove parentheses. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is the associative law of e.g. \land
?
Back: E1 \land (E2 \land E3) = (E1 \land E2) \land E3
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
- Distributive Laws
E1 \lor (E2 \land E3) = (E1 \lor E2) \land (E1 \lor E3)
E1 \land (E2 \lor E3) = (E1 \land E2) \lor (E1 \land E3)
%%ANKI
Basic
Which of the basic logical operators do the distributive laws apply to?
Back: \land
and \lor
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What do the distributive laws allow us to do? Back: "Factor" propositions. Reference: Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is the distributive law of e.g. \land
over \lor
?
Back: E1 \land (E2 \lor E3) = (E1 \land E2) \lor (E1 \land E3)
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
- De Morgan's Laws
\neg (E1 \land E2) = \neg E1 \lor \neg E2
\neg (E1 \lor E2) = \neg E1 \land \neg E2
%%ANKI
Basic
Which of the basic logical operators do De Morgan's Laws apply to?
Back: \land
and \lor
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What is De Morgan's Law of e.g. \land
?
Back: \neg (E1 \land E2) = \neg E1 \lor \neg E2
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
- Law of Negation
\neg (\neg E1) = E1
%%ANKI
Basic
What does the Law of Negation say?
Back: \neg (\neg E1) = E1
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
- Law of the Excluded Middle
E1 \lor \neg E1 = T
%%ANKI
Basic
Which of the basic logical operators does the Law of the Excluded Middle apply to?
Back: \lor
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What does the Law of the Excluded Middle say?
Back: E1 \lor \neg E1 = T
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic Which equivalence schema is "refuted" by sentence, "This sentence is false." Back: Law of the Excluded Middle Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
- Law of Contradiction
E1 \land \neg E1 = F
%%ANKI
Basic
Which of the basic logical operators does the Law of Contradiction apply to?
Back: \land
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What does the Law of Contradiction say?
Back: E1 \land \neg E1 = F
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Cloze
The Law of {1:the Excluded Middle} is to {2:\lor
} whereas the Law of {2:Contradiction} is to {1:\land
}.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
Gries lists other "Laws" but they don't seem as important to note here.
%%ANKI
Basic
How is \Rightarrow
written in terms of other logical operators?
Back: p \Rightarrow q
is equivalent to \neg p \lor q
.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
How is \Leftrightarrow
/=
written in terms of other logical operators?
Back: p \Leftrightarrow q
is equivalent to (p \Rightarrow q) \land (q \Rightarrow p)
.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
Equivalence Rules
- Rule of Substitution
- Let
P(r)
be a predicate andE1 = E2
be an equivalence. ThenP(E1) = P(E2)
is an equivalence.
- Let
- Rule of Transitivity
- Let
E1 = E2
andE2 = E3
be equivalences. ThenE1 = E3
is an equivalence.
- Let
%%ANKI Basic What two inference rules make up the equivalence-transformation formal system? Back: Substitution and transitivity. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What does the rule of substitution say in the system of evaluation?
Back: Let P(r)
be a predicate and E1 = E2
be an equivalence. Then P(E1) = P(E2)
is an equivalence.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic How is the rule of substitution written as an inference rule (in standard form)? Back:
\begin{matrix}
E1 = E2 \\
\hline P(E1) = P(E2)
\end{matrix}
END%%
%%ANKI
Basic
What does the rule of transitivity state in the system of evaluation?
Back: Let E1 = E2
and E2 = E3
. Then E1 = E3
.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic How is the rule of transitivity written as an inference rule (in standard form)? Back:
\begin{matrix}
E1 = E2, E2 = E3 \\
\hline E1 = E3
\end{matrix}
END%%
%%ANKI Cloze The system of evaluation has {equivalences} whereas the formal system has {theorems}. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
Normal Forms
Every proposition can be written in disjunctive normal form (DNF) and conjunctive normal form (CNF). This is evident with the use of truth tables. To write a proposition in DNF, write its corresponding truth table and \lor
each row that evaluates to T
. To write the same proposition in CNF, apply \lor
to each row that evaluates to F
and negate it.
\neg (a \Rightarrow b) \Leftrightarrow c
It's truth table looks like
\begin{array}{c|c|c|c|c|c}
\neg & (a & \Rightarrow & b) & \Leftrightarrow & c \\
\hline
F & T & T & T & F & T \\
F & T & T & T & T & F \\
T & T & F & F & T & T \\
T & T & F & F & F & F \\
F & F & T & T & F & T \\
F & F & T & T & T & F \\
F & F & T & F & F & T \\
F & F & T & F & T & F
\end{array}$$
and it's DNF looks like
(a \land b \land \neg c) \lor (a \land \neg b \land c) \lor (\neg a \land b \land \neg c) \lor (\neg a \land \neg b \land \neg c)
It's CNF results from applying De Morgan's Law to the truth table's "complement":
\neg( (a \land b \land c) \lor (a \land \neg b \land \neg c) \lor (\neg a \land b \land c) \lor (\neg a \land \neg b \land c) )
%%ANKI
Basic
What construct is used to prove every proposition can be written in DNF or CNF?
Back: Truth tables
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707311868994-->
END%%
%%ANKI
Basic
Where are $\land$ and $\lor$ found within a proposition in DNF?
Back: $\lor$ separates disjuncts containing $\land$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707311868998-->
END%%
%%ANKI
Basic
What is DNF an acronym for?
Back: **D**isjunctive **N**ormal **F**orm.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707311869000-->
END%%
%%ANKI
Basic
What is CNF an acronym for?
Back: **C**onjunctive **N**ormal **F**orm.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707311869002-->
END%%
%%ANKI
Basic
Where are $\land$ and $\lor$ found within a proposition in CNF?
Back: $\land$ separates conjuncts containing $\lor$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707311869003-->
END%%
## References
* Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.