notebook/notes/logic/propositional.md

233 lines
9.0 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

---
title: Propositional Logic
TARGET DECK: Obsidian::STEM
FILE TAGS: logic::propositional
tags:
- logic
- propositional
---
## Overview
A branch of logic derived from negation ($\neg$), conjunction ($\land$), disjunction ($\lor$), implication ($\Rightarrow$), and biconditionals ($\Leftrightarrow$). There exists a hierarchy of terms used to describe a string of English:
* A **sentence** is any grammatical string of words.
* A **predicate** is a sentence with free variables.
* A **statement** is a sentence that can be assigned a truth or false value.
* A predicate with free variables "plugged in" is a statement.
%%ANKI
Basic
What are the basic propositional logical operators?
Back: $\neg$, $\land$, $\lor$, $\Rightarrow$, and $\Leftrightarrow$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861291-->
END%%
%%ANKI
Basic
What is a propositional statement?
Back: A declarative sentence which is either true or false.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272076-->
END%%
%%ANKI
Basic
What two categories do propositional statements fall within?
Back: Atomic and molecular statements.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272083-->
END%%
%%ANKI
Basic
What is an atomic statement?
Back: One that cannot be broken up into smaller statements.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272087-->
END%%
%%ANKI
Basic
What is a molecular statement?
Back: One that can be broken up into smaller statements.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272091-->
END%%
%%ANKI
Cloze
A {molecular} statement can be broken up into {atomic} statements.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272095-->
END%%
%%ANKI
Basic
What distinguishes a sentence from a statement?
Back: The latter is a sentence that can be derived a truth value.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272099-->
END%%
%%ANKI
Basic
What distinguishes a predicate from a statement?
Back: A statement does not contain free variables.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272110-->
END%%
%%ANKI
Basic
How are statements defined in terms of predicates?
Back: A statement is a predicate with $0$ free variables.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272115-->
END%%
%%ANKI
Basic
Why is "$3 + x = 12$" *not* a statement?
Back: Because $x$ is a variable.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272121-->
END%%
## Implication
Implication is denoted as $\Rightarrow$. It has truth table
$p$ | $q$ | $p \Rightarrow q$
--- | --- | -----------------
$T$ | $T$ | $T$
$T$ | $F$ | $F$
$F$ | $T$ | $T$
$F$ | $F$ | $T$
Implication has a few "equivalent" English expressions that are commonly used.
Given propositions $P$ and $Q$, we have the following equivalences:
* $P$ if $Q$
* $P$ only if $Q$
* $P$ is necessary for $Q$
* $P$ is sufficient for $Q$
%%ANKI
Basic
What name is given to operand $a$ in $a \Rightarrow b$?
Back: The antecedent
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861308-->
END%%
%%ANKI
Basic
What name is given to operand $b$ in $a \Rightarrow b$?
Back: The consequent
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861310-->
END%%
%%ANKI
Basic
How does "$P$ if $Q$" translate with $\Rightarrow$?
Back: $Q \Rightarrow P$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272127-->
END%%
%%ANKI
Basic
How does "$P$ only if $Q$" translate with $\Rightarrow$?
Back: $P \Rightarrow Q$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272134-->
END%%
%%ANKI
Basic
How does "$P$ is necessary for $Q$" translate with $\Rightarrow$?
Back: $Q \Rightarrow P$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272140-->
END%%
%%ANKI
Basic
How does "$P$ is sufficient for $Q$" translate with $\Rightarrow$?
Back: $P \Rightarrow Q$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272145-->
END%%
%%ANKI
Basic
Which of *if* or *only if* map to *necessary*?
Back: *if*
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272151-->
END%%
%%ANKI
Basic
Which of *if* or *only if* map to *sufficient*?
Back: *only if*
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272157-->
END%%
%%ANKI
Basic
Which logical operator maps to "if and only if"?
Back: $\Leftrightarrow$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272163-->
END%%
%%ANKI
Basic
Which logical operator maps to "necessary and sufficient"?
Back: $\Leftrightarrow$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272168-->
END%%
%%ANKI
Basic
What is the converse of $P \Rightarrow Q$?
Back: $Q \Rightarrow P$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272173-->
END%%
%%ANKI
Basic
When is implication equivalent to its converse?
Back: It's indeterminate.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272178-->
END%%
%%ANKI
Basic
What is the contrapositive of $P \Rightarrow Q$?
Back: $\neg Q \Rightarrow \neg P$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272184-->
END%%
%%ANKI
Basic
When is implication equivalent to its contrapositive?
Back: They are always equivalent.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708199272189-->
END%%
## References
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).