12 KiB
title | TARGET DECK | FILE TAGS | tags | ||
---|---|---|---|---|---|
Propositional Logic | Obsidian::STEM | formal-system::propositional |
|
Overview
Propositional logic is a logical system derived from negation (\neg
), conjunction (\land
), disjunction (\lor
), implication (\Rightarrow
), and biconditionals (\Leftrightarrow
). A proposition is a sentence that can be assigned a truth value.
%%ANKI Cloze {Propositional} logic is also known as {zeroth}-order logic. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What are the basic propositional logical operators?
Back: \neg
, \land
, \lor
, \Rightarrow
, and \Leftrightarrow
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI Basic What is a proposition? Back: A declarative sentence that can be assigned a truth value. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What is an atomic proposition? Back: One that cannot be broken up into smaller propositions. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What is a molecular proposition? Back: One that can be broken up into smaller propositions. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Cloze A {molecular} proposition can be broken up into {atomic} propositions. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What distinguishes a sentence from a proposition? Back: The latter has an associated truth value. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What are constant propositions? Back: Propositions that contain only constants as operands. Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
How does Lean define propositional equality?
Back: Expressions a
and b
are propositionally equal iff a = b
is true.
Reference: Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
Tags: lean
END%%
%%ANKI
Basic
How does Lean define propext
?
Back:
axiom propext {a b : Prop} : (a ↔ b) → (a = b)
Reference: Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d. Tags: lean
END%%
Implication
Implication is denoted as \Rightarrow
. In classical logic, it has truth table \begin{array}{c|c|c} p & q & p \Rightarrow q \ \hline T & T & T \ T & F & F \ F & T & T \ F & F & T \end{array}
Implication has a few "equivalent" English expressions that are commonly used.
Given propositions P
and Q
, we have the following equivalences:
P
ifQ
P
only ifQ
P
is necessary forQ
P
is sufficient forQ
%%ANKI
Basic
What name is given to operand a
in a \Rightarrow b
?
Back: The antecedent.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
What name is given to operand b
in a \Rightarrow b
?
Back: The consequent.
Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
%%ANKI
Basic
How do you write "P
if Q
" in propositional logic?
Back: Q \Rightarrow P
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
if Q
" using "necessary"?
Back: P
is necessary for Q
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
if Q
" using "sufficient"?
Back: Q
is sufficient for P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
only if Q
" in propositional logic?
Back: P \Rightarrow Q
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
only if Q
" using "necessary"?
Back: Q
is necessary for P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
only if Q
" using "sufficient"?
Back: P
is sufficient for Q
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is necessary for Q
" in propositional logic?
Back: Q \Rightarrow P
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is necessary for Q
" using "if"?
Back: P
if Q
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is necessary for Q
" using "only if"?
Back: Q
only if P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is sufficient for Q
" in propositional logic?
Back: P \Rightarrow Q
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is sufficient for Q
" using "if"?
Back: Q
if P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is sufficient for Q
" using "only if"?
Back: P
only if Q
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
if Q
" using "only if"?
Back: Q
only if P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is sufficient for Q
" using "necessary"?
Back: Q
is necessary for P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
only if Q
" using "if"?
Back: Q
if P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How do you write "P
is necessary for Q
" using "sufficient"?
Back: Q
is sufficient for P
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
Which logical operator maps to "if and only if"?
Back: \Leftrightarrow
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
Which logical operator maps to "necessary and sufficient"?
Back: \Leftrightarrow
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What is the converse of P \Rightarrow Q
?
Back: Q \Rightarrow P
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic When is implication equivalent to its converse? Back: It's indeterminate. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What is the contrapositive of P \Rightarrow Q
?
Back: \neg Q \Rightarrow \neg P
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic When is implication equivalent to its contrapositive? Back: They are always equivalent. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
Given propositions p
and q
, p \Leftrightarrow q
is equivalent to the conjunction of what two expressions?
Back: p \Rightarrow q
and q \Rightarrow p
.
Reference: Reference: Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
Bibliography
- Gries, David. The Science of Programming. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
- “Law of Noncontradiction,” in Wikipedia, June 14, 2024, https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction.
-
- Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
- “Principle of Explosion,” in Wikipedia, July 3, 2024, https://en.wikipedia.org/w/index.php?title=Principle_of_explosion.