notebook/notes/logic/equiv-trans.md

929 lines
34 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
title: Equivalence Transformation
TARGET DECK: Obsidian::STEM
FILE TAGS: programming::equiv-trans
tags:
- equiv-trans
- logic
- programming
---
## Overview
**Equivalence-transformation** refers to a class of calculi for [[prop-logic|propositional logic]] derived from negation ($\neg$), conjunction ($\land$), disjunction ($\lor$), implication ($\Rightarrow$), and equality ($=$).
Gries covers two in "The Science of Programming": a system of evaluation and a formal system. The system of evaluation mirrors how a computer processes instructions, at least in an abstract sense. The formal system serves as a theoretical framework for reasoning about propositions and their transformations without resorting to "lower-level" operations like substitution.
%%ANKI
Basic
Who is the author of "The Science of Programming"?
Back: David Gries
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861286-->
END%%
%%ANKI
Cloze
Gries replaces logical operator {$\Leftrightarrow$} in favor of {$=$}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861295-->
END%%
%%ANKI
Basic
What Lean theorem justifies Gries' choice of $=$ over $\Leftrightarrow$?
Back: `propext`
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: lean
<!--ID: 1706994861302-->
END%%
%%ANKI
Basic
What are the two calculi Gries describes equivalence-transformation with?
Back: A formal system and a system of evaluation.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673342-->
END%%
## Equivalence Schemas
A proposition is said to be a **tautology** if it evaluates to $T$ in every state it is well-defined in. We say propositions $E1$ and $E2$ are **equivalent** if $E1 = E2$ is a tautology. In this case, we say $E1 = E2$ is an **equivalence**.
%%ANKI
Basic
What does it mean for a proposition to be a tautology?
Back: That the proposition is true in every state it is well-defined in.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861323-->
END%%
%%ANKI
Basic
How is tautology $e$ written equivalently with a quantifier?
Back: For free identifiers $i_1, \ldots, i_n$ in $e$, as $\forall (i_1, \ldots, i_n), e$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867032-->
END%%
%%ANKI
Basic
The term "equivalent" refers to a comparison between what two objects?
Back: Expressions.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673345-->
END%%
%%ANKI
Basic
What does it mean for two propositions to be equivalent?
Back: Given propositions $E1$ and $E2$, it means $E1 = E2$ is a tautology.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673347-->
END%%
%%ANKI
Basic
What is an equivalence?
Back: Given propositions $E1$ and $E2$, tautology $E1 = E2$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673348-->
END%%
%%ANKI
Basic
How is $\Rightarrow$ written in terms of other logical operators?
Back: $p \Rightarrow q$ is equivalent to $\neg p \lor q$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861358-->
END%%
%%ANKI
Basic
How is $\Leftrightarrow$/$=$ written in terms of other logical operators?
Back: $p \Leftrightarrow q$ is equivalent to $(p \Rightarrow q) \land (q \Rightarrow p)$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861360-->
END%%
%%ANKI
Basic
What distinguishes an equality from an equivalence?
Back: An equivalence is an equality that is also a tautology.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178709-->
END%%
## Equivalence Rules
* Rule of Substitution
* Let $P(r)$ be a predicate and $E1 = E2$ be an equivalence. Then $P(E1) = P(E2)$ is an equivalence.
* Rule of Transitivity
* Let $E1 = E2$ and $E2 = E3$ be equivalences. Then $E1 = E3$ is an equivalence.
%%ANKI
Basic
What two inference rules make up the equivalence-transformation formal system?
Back: Substitution and transitivity.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707253246450-->
END%%
%%ANKI
Basic
Which of the two inference rules that make up the equivalence-transformation formal system is redundant?
Back: Transitivity.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707432641598-->
END%%
%%ANKI
Basic
What does the rule of substitution say in the system of evaluation?
Back: Let $P(r)$ be a predicate and $E1 = E2$ be an equivalence. Then $P(E1) = P(E2)$ is an equivalence.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707253246452-->
END%%
%%ANKI
Basic
How is the rule of substitution written as an inference rule (in standard form)?
Back:
$$
\begin{matrix}
E1 = E2 \\
\hline P(E1) = P(E2)
\end{matrix}
$$
<!--ID: 1707253246454-->
END%%
%%ANKI
Basic
What does the rule of transitivity state in the system of evaluation?
Back: Let $E1 = E2$ and $E2 = E3$. Then $E1 = E3$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707253246455-->
END%%
%%ANKI
Basic
How is the rule of transitivity written as an inference rule (in standard form)?
Back:
$$
\begin{matrix}
E1 = E2, E2 = E3 \\
\hline E1 = E3
\end{matrix}
$$
<!--ID: 1707253246457-->
END%%
%%ANKI
Cloze
The system of evaluation has {equivalences} whereas the formal system has {theorems}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707253246458-->
END%%
%%ANKI
Basic
What is a "theorem" in the equivalence-transformation formal system?
Back: An equivalence derived from the axioms and inference rules.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178712-->
END%%
%%ANKI
Basic
How is e.g. the Law of Implication proven in the system of evaluation?
Back: With truth tables.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178714-->
END%%
%%ANKI
Basic
How is e.g. the Law of Implication proven in the formal system?
Back: It isn't. It is an axiom.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178715-->
END%%
%%ANKI
Cloze
The system of evaluation and formal system are connected by the following biconditional: {$e$ is a tautology} iff {$e = T$ is a theorem}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178717-->
END%%
%%ANKI
Cloze
The {1:system of evaluation} is to {2:"$e$ is a tautology"} whereas the {2:formal system} is to {1:"$e = T$ is a theorem"}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316276203-->
END%%
## Selectors
A **selector** denotes a finite sequence of subscript expressions, each enclosed in brackets. $\epsilon$ denotes the empty selector. For example, variable $x$ is equivalently denoted as $x \circ \epsilon$ whereas for array $b$, $b[i]$ is equivalently denoted as $b \circ [i]$.
**Selector update** syntax allows specifying a new value with previous subscripted values overridden. For instance, $(b; i{:}e)$ denotes $b$ with $b[i]$ now referring to $e$. More formally, for any $j \in \mathop{domain}(b)$, $$(b; i{:}e)[j] = \begin{cases} i = j \rightarrow e \\ i \neq j \rightarrow b[j] \end{cases}$$
%%ANKI
Basic
Let $b$ be an array. What does $b.lower$ denote?
Back: The lower subscript bound of the array.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130015-->
END%%
%%ANKI
Basic
Let $b$ be an array. What does $b.upper$ denote?
Back: The upper subscript bound of the array.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130019-->
END%%
%%ANKI
Basic
Let $b$ be an array. How is $domain(b)$ defined in set-theoretic notation?
Back: $\{i \mid b.lower \leq i \leq b.upper\}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130022-->
END%%
%%ANKI
Basic
Let $b[0{:}2]$ be an array. What is $b.lower$?
Back: $0$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130025-->
END%%
%%ANKI
Basic
Let $b[0{:}2]$ be an array. What is $b.upper$?
Back: $2$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130028-->
END%%
%%ANKI
Basic
Execution of `b[i] := e` of array $b$ in state $s$ yields what new value of $b$?
Back: $b = (b; i{:}s(e))$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130031-->
END%%
%%ANKI
Basic
Let $s$ be a state. What *is* $x$ in $(s; x{:}e)$?
Back: An identifier found in $s$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130034-->
END%%
%%ANKI
Basic
Let $s$ be a state. What *is* $e$ in $(s; x{:}e)$?
Back: An expression.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130037-->
END%%
%%ANKI
Basic
Let $s$ be a state. What is $e$'s type in $(s; x{:}e)$?
Back: A type matching $x$'s declaration.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130041-->
END%%
%%ANKI
Basic
Let $b$ be an array. What *is* $x$ in $(b; x{:}e)$?
Back: An expression that evaluates to a member of $domain(b)$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130045-->
END%%
%%ANKI
Basic
Let $b$ be an array. What is $e$'s type in $(b; x{:}e)$?
Back: A type matching $b$'s member declaration.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130050-->
END%%
%%ANKI
Basic
Let $b$ be an array. What case analysis does $(b; i{:}e)[j]$ evaluate to?
Back: $$(b; i{:}e)[j] = \begin{cases} i = j \rightarrow e \\ i \neq j \rightarrow b[j] \end{cases}$$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130056-->
END%%
%%ANKI
Basic
Let $b$ be an array. How is $(((b; i{:}e_1); j{:}e_2); k{:}e_3)$ rewritten without nesting?
Back: As $(b; i{:}e_1; j{:}e_2; k{:}e_3)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130062-->
END%%
%%ANKI
Basic
Let $b$ be an array. How is $(b; (i{:}e_1; (j{:}e_2; (k{:}e_3))))$ rewritten without nesting?
Back: N/A. This is invalid syntax.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130067-->
END%%
%%ANKI
Basic
Let $b$ be an array. How is $(b; i{:}e_1; j{:}e_2; k{:}e_3)$ rewritten with nesting?
Back: As $(((b; i{:}e_1); j{:}e_2); k{:}e_3)$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130072-->
END%%
%%ANKI
Basic
Let $b$ be an array. What does $(b; i{:}2; i{:}3; i{:}4)[i]$ evaluate to?
Back: $4$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130077-->
END%%
%%ANKI
Basic
Let $b$ be an array. How is $(b; 0{:}8; 2{:}9; 0{:}7)[1]$ simplified?
Back: As $b[1]$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130081-->
END%%
%%ANKI
Basic
According to Gries, what is the traditional interpretation of an array?
Back: As a collection of subscripted independent variables (with a common name).
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130086-->
END%%
%%ANKI
Basic
According to Gries, what is the new interpretation of an array?
Back: As a function.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130090-->
END%%
%%ANKI
Basic
What propositional expression results from eliminating $(b; \ldots)$ notation from $(b; i{:}5)[j] = 5$?
Back: $(i = j \land 5 = 5) \lor (i \neq j \land b[j] = 5)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130095-->
END%%
%%ANKI
Basic
What logical axiom is used when eliminating $(b; \ldots)$ notation from e.g. $(b; i{:}5)[j] = 5$?
Back: The Law of the Excluded Middle.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130100-->
END%%
%%ANKI
Cloze
For state $s$ and array $b$, {$(s; x{:}s(x))$} is analagous to {$(b; i{:}b[i])$}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130104-->
END%%
%%ANKI
Basic
What is the simplification of $(b; i{:}b[i]; j{:}b[j]; k{:}b[j])$?
Back: $(b; k{:}b[j])$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1713793130108-->
END%%
%%ANKI
Basic
Given array $b$, what terminology does Gries use to describe $i{:}j$ in e.g. $b[i{:}j]$?
Back: A section.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640885-->
END%%
%%ANKI
Basic
Given array $b$, how many elements are in section $b[i{:}j]$?
Back: $j - i + 1$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714336859994-->
END%%
%%ANKI
Basic
Given array $b$ and fixed $j$, what is the largest possible value of $i$ in $b[i{:}j]$?
Back: $j + 1$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714336859997-->
END%%
%%ANKI
Basic
Given array $b$, how many elements are in $b[j{+}1{:}j]$?
Back: $0$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714336860000-->
END%%
%%ANKI
Basic
Given array $b$, what is $b[1{:}5] = x$ an abbreviation for?
Back: $\forall i, 1 \leq i \leq 5 \Rightarrow b[i] = x$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714336860003-->
END%%
%%ANKI
Basic
Given array $b$, what is $b[1{:}k{-}1] < x < b[k{:}n{-}1]$ an abbreviation for?
Back: $(\forall i, 1 \leq i < k \Rightarrow b[i] < x) \land (\forall i, k \leq i < n \Rightarrow x < b[i])$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714336860005-->
END%%
Generalizing further to all variable types $x$, $$\begin{align*} (x; \epsilon{:}e) & = e \\ (x; [i] {\circ} s{:}e)[j] & = \begin{cases} i \neq j \rightarrow x[j] \\ i = j \rightarrow (x[j]; s{:}e) \end{cases} \end{align*}$$
%%ANKI
Basic
What is a selector?
Back: A finite sequence of subscript expressions.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640890-->
END%%
%%ANKI
Basic
Given valid expression $(x; [i]{\circ}s{:}e)$, what can be said about $i$?
Back: $i$ is in the domain of $x$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640893-->
END%%
%%ANKI
Basic
What is the base case of selector update syntax?
Back: $(x; \epsilon{:}e) = e$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640901-->
END%%
%%ANKI
Basic
How is the null selector usually denoted?
Back: $\epsilon$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640904-->
END%%
%%ANKI
Basic
The null selector is the identity element of what operation?
Back: Subscript sequence concatenation.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640907-->
END%%
%%ANKI
Basic
How is assignment $x := e$ rewritten with a selector?
Back: $x \circ \epsilon := e$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640910-->
END%%
%%ANKI
Basic
How is $x \circ \epsilon := e$ rewritten using selector update syntax?
Back: $x := (x; \epsilon{:}e)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640913-->
END%%
%%ANKI
Basic
How is command $x := (x; \epsilon{:}e)$ more compactly rewritten?
Back: $x := e$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640917-->
END%%
%%ANKI
Basic
What two assignments (i.e. using `:=`) are used to prove $e = (x; \epsilon{:}e)$?
Back: $x := e$ and $x \circ \epsilon := e$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640921-->
END%%
%%ANKI
Basic
How do assignments $x := e$ and $x \circ \epsilon := e$ prove $e = (x; \epsilon{:}e)$?
Back: The assignments have the same effect and the latter can be written as $x := (x; \epsilon{:}e)$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640926-->
END%%
%%ANKI
Basic
Let $b$ be an array. How is $b[i][j] := e$ rewritten using selector update syntax?
Back: $b := (b; [i][j]{:}e)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640930-->
END%%
%%ANKI
Basic
Let $b$ be an array. What does $(b; \epsilon{:}g)$ evaluate to?
Back: $g$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640934-->
END%%
%%ANKI
Basic
Let $b$ be an array and $i = j$. What does $(b; [i]{\circ}s{:}e)[j]$ evaluate to?
Back: $(b[j]; s{:}e)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640938-->
END%%
%%ANKI
Basic
Let $b$ be an array and $i \neq j$. What does $(b; [i]{\circ}s{:}e)[j]$ evaluate to?
Back: $b[j]$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640942-->
END%%
%%ANKI
Basic
Maintaining selector update syntax, how is $(c; 1{:}3)[1]$ more explicitly written with a selector?
Back: $(c; [1]{:}3)[1]$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640948-->
END%%
%%ANKI
Basic
Maintaining selector update syntax, how is $(c; 1{:}3)[1]$ rewritten with $[1]$ commuted as leftward as possible?
Back: $(c[1]; \epsilon{:}3)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1714395640953-->
END%%
## Substitution
**Textual substitution** refers to the replacement of a [[pred-logic#Identifiers|free]] identifier with an expression, introducing parentheses as necessary. This concept amounts to the [[#Equivalence Rules|Substitution Rule]] with different notation.
%%ANKI
Basic
Textual substitution is derived from what equivalence rule?
Back: The substitution rule.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304123-->
END%%
### Simple
If $x$ denotes a variable and $e$ an expression, substitution of $x$ by $e$ is denoted as $$\large{E_e^x}$$
%%ANKI
Basic
What term refers to $x$ in textual substitution $E_e^x$?
Back: The reference.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707939006275-->
END%%
%%ANKI
Basic
What term refers to $e$ in textual substitution $E_e^x$?
Back: The expression.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707939006283-->
END%%
%%ANKI
Basic
What term refers to both $x$ and $e$ together in textual substitution $E_e^x$?
Back: The reference-expression pair.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707939006288-->
END%%
%%ANKI
Basic
What identifier is guaranteed to not occur freely in $E_e^x$?
Back: N/A.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867036-->
END%%
%%ANKI
Basic
What identifier is guaranteed to not occur freely in $E_{s(e)}^x$?
Back: $x$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867039-->
END%%
%%ANKI
Basic
*Why* does $x$ not occur freely in $E_{s(e)}^x$?
Back: Because $s(e)$ evaluates to a constant proposition.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867042-->
END%%
%%ANKI
Basic
What is the role of $E$ in textual substitution $E_e^x$?
Back: It is the expression in which free occurrences of $x$ are replaced.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1708347042194-->
END%%
%%ANKI
Basic
What is the role of $e$ in textual substitution $E_e^x$?
Back: It is the expression that is evaluated and substituted into $E$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1708347042199-->
END%%
%%ANKI
Basic
What is the role of $x$ in textual substitution $E_e^x$?
Back: It is the identifier matching free occurrences in $E$ that are replaced.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1708347042203-->
END%%
%%ANKI
Basic
How is textual substitution $E_e^x$ interpreted as a function?
Back: As $E(e)$, where $E$ is a function of $x$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304130-->
END%%
%%ANKI
Basic
Why does Gries prefer notation $E_e^x$ over e.g. $E(e)$?
Back: The former indicates the identifier to replace.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304132-->
END%%
%%ANKI
Basic
What two scenarios ensure $E_e^x = E$ is an equivalence?
Back: $x = e$ or no free occurrences of $x$ exist in $E$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304133-->
END%%
%%ANKI
Basic
If $x \neq e$, why might $E_e^x = E$ be an equivalence despite $x$ existing in $E$?
Back: The only occurrences of $x$ in $E$ may be bound.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304135-->
END%%
%%ANKI
Basic
What is required for $E_e^x$ to be valid?
Back: Substitution must result in a syntactically valid expression.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304137-->
END%%
%%ANKI
Basic
What is the result of the following? $$(x < y \land (\forall i : 0 \leq i < n : b[i] < y))_z^x$$
Back: $$(z < y \land (\forall i : 0 \leq i < n : b[i] < y))$$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304139-->
END%%
%%ANKI
Basic
What is the result of the following? $$(x < y \land (\forall i : 0 \leq i < n : b[i] < y))_z^y$$
Back: $$(x < z \land (\forall i : 0 \leq i < n : b[i] < z))$$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304140-->
END%%
%%ANKI
Basic
What is the result of the following? $$(x < y \land (\forall i : 0 \leq i < n : b[i] < y))_z^i$$
Back: $$(x < y \land (\forall i : 0 \leq i < n : b[i] < y))$$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304141-->
END%%
### General
We can generalize textual substitution to operate on a vector of reference-expression pairs, where each reference corresponds to some identifier concatenated with a selector. Let $\bar{x} = \langle x_1, \ldots, x_n \rangle$ denote a vector of identifiers concatenated with selectors and $\bar{e} = \langle e_1, \ldots, e_n \rangle$ denote a vector of expressions. Then textual substitition of $\bar{x}$ with $\bar{e}$ in expression $E$ is denoted as $$\large{E_{\bar{e}}^{\bar{x}}}$$
Substitution is defined recursively as follows:
1. If each $x_i$ is a distinct identifier with a null selector, then $E_{\bar{e}}^{\bar{x}}$ is the simultaneous substitution of $\bar{x}$ with $\bar{e}$.
2. Adjacent reference-expression pairs may be permuted as long as they begin with different identifiers. That is, for all distinct $b$ and $c$, $$\Large{E_{\bar{e}, \,f, \,h, \,\bar{g}}^{\bar{x}, \,b, \,c, \,\bar{y}} = E_{\bar{x}, \,h, \,f, \,\bar{g}}^{\bar{x}, \,c, \,b, \,\bar{y}}}$$
3. Multiple assignments to subparts of an object $b$ can be viewed as a single assignment to $b$. That is, provided $b$ does not begin any of the $x_i$, $$\Large{E_{e_1, \,\ldots, \,e_m, \,\bar{g}}^{b \circ s_1, \,\ldots, \,b \circ s_m, \,\bar{x}} = E_{(b; \,s_1{:}e_1; \,\cdots; \,s_m{:}e_m), \,\bar{g}}^{b, \,\bar{x}}}$$
Note that simultaneous substitution is different from sequential substitution.
TODO
### Theorems
* $(E_u^x)_v^x = E_{u_v^x}^x$
* The only possible free occurrences of $x$ that may appear after the first of the sequential substitutions occur in $u$.
%%ANKI
Basic
How do we simplify $(E_u^x)_v^x$?
Back: As $E_{u_v^x}^x$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304143-->
END%%
%%ANKI
Basic
How is $E_{u_v^x}^x$ rewritten as sequential substitution?
Back: As $(E_u^x)_v^x$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304145-->
END%%
%%ANKI
Basic
Why is $(E_u^x)_v^x = E_{u_v^x}^x$ an equivalence?
Back: After the first substitution, the only possible free occurrences of $x$ are in $u$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304146-->
END%%
* If $y$ is not free in $E$, then $(E_u^x)_v^y = E_{u_v^y}^x$.
* $y$ may not be free in $E$ but substituting $x$ with $u$ can introduce a free occurrence. It doesn't matter if we perform the substitution first or second though.
%%ANKI
Basic
In what two scenarios is $(E_u^x)_v^y = E_{u_v^y}^x$ always an equivalence?
Back: $x = y$ or $y$ is not free in $E$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304148-->
END%%
%%ANKI
Basic
If $x \neq y$, when is $(E_u^x)_v^y = E_{u_v^y}^x$?
Back: When $y$ is not free in $E$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304150-->
END%%
%%ANKI
Basic
Why should $y$ not be free in $E$ for $(E_u^x)_v^y = E_{u_v^y}^x$ to be an equivalence?
Back: If it were, a $v$ would exist in the LHS that doesn't in the RHS.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707762304152-->
END%%
%%ANKI
Basic
How does Gries denote state $s$ with identifer $x$ set to value $v$?
Back: $(s; x{:}v)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867049-->
END%%
%%ANKI
Basic
How is $(s; x{:}v)$ written instead using set-theoretical notation?
Back: $(s - \{\langle x, s(x) \rangle\}) \cup \{\langle x, v \rangle\}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867053-->
END%%
%%ANKI
Basic
Execution of `x := e` in state $s$ terminates in what new state?
Back: $(s; x{:}s(e))$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867058-->
END%%
%%ANKI
Basic
Given state $s$, what statement does $(s; x{:}s(e))$ derive from?
Back: `x := e`
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867062-->
END%%
%%ANKI
Basic
What missing value guarantees state $s$ satisfies equivalence $s = (s; x{:}\_)$?
Back: $s(x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867067-->
END%%
%%ANKI
Basic
Given state $s$, why is it that $s = (s; x{:}s(x))$?
Back: Evaluating $x$ in state $s$ yields $s(x)$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867072-->
END%%
* $s(E_e^x) = s(E_{s(e)}^x)$
* Substituting $x$ with $e$ and then evaluating is the same as substituting $x$ with the evaluation of $e$.
%%ANKI
Basic
How can we simplify $s(E_{s(e)}^x)$?
Back: As $s(E_e^x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867076-->
END%%
%%ANKI
Basic
Given state $s$, what equivalence relates $E_e^x$ with $E_{s(e)}^x$?
Back: $s(E_e^x) = s(E_{s(e)}^x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867080-->
END%%
* Let $s$ be a state and $s' = (s; x{:}s(e))$. Then $s'(E) = s(E_e^x)$.
%%ANKI
Cloze
Let $s$ be a state and $s' = (${$s; x{:}s(e)$}$)$. Then $s'(${$E$}$) = s(${$E_e^x$}$)$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707938187973-->
END%%
%%ANKI
Basic
If $s' = (s; x{:}s(e))$, then $s'(E) = s(E_e^x)$. Why do we not say $s' = (s; x{:}e)$ instead?
Back: The value of a state's identifier must always be a constant proposition.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1708693353856-->
END%%
%%ANKI
Basic
How do you define $s'$ such that $s(E_e^x) = s'(E)$?
Back: $s' = (s; x{:}s(e))$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707939006292-->
END%%
%%ANKI
Basic
Given defined value $v \neq s(x)$, when is $s(E) = (s; x{:}v)(E)$?
Back: When $x$ is not free in $E$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707939315519-->
END%%
* Given identifiers $\bar{x}$ and fresh identifiers $\bar{u}$, $(E_{\bar{u}}^{\bar{x}})_{\bar{x}}^{\bar{u}} = E$.
%%ANKI
Basic
When is $(E_{\bar{u}}^{\bar{x}})_{\bar{x}}^{\bar{u}} = E$ guaranteed to be an equivalence?
Back: When $\bar{x}$ and $\bar{u}$ refer to distinct identifiers.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707939006297-->
END%%
## Bibliography
* Avigad, Jeremy. Theorem Proving in Lean, n.d.
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.