3.8 KiB
title | TARGET DECK | FILE TAGS | tags | ||
---|---|---|---|---|---|
Merge Sort | Obsidian::STEM | algorithm::sorting |
|
Overview
Property | Value |
---|---|
Best Case | \Omega(n\lg{n}) |
Worst Case | O(n\lg{n}) |
Avg. Case | O(n\lg{n}) |
Aux. Memory | - |
Stable | - |
Adaptive | - |
%%ANKI Basic What does the term "merge" in merge sort refer to? Back: The primary operation used to combine array halves. Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI
Basic
What is merge sort's best case runtime?
Back: \Omega(n\lg{n})
Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI
Basic
What is merge sort's worst case runtime?
Back: O(n\lg{n})
Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI
Basic
What is merge sort's average case runtime?
Back: O(n\lg{n})
Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI Basic What is the "divide" step of merge sort? Back: Divide the input array into two subarrays of half size. Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI Basic What is the "conquer" step of merge sort? Back: Call merge sort on the "divide"-step's two subarrays. Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI Basic What is the "combine" step of merge sort? Back: Merge the subarrays sorted after the "conquer" step. Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI Basic When does merge sort "bottom out"? Back: When the sequence to be sorted has length 1 or less. Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
static void merge(int i, int mid, int j, int *A) {
int si = mid - i + 1;
int sj = j - (mid + 1) + 1;
int *L = malloc(sizeof(int) * (si + 1));
int *R = malloc(sizeof(int) * (sj + 1));
L[si] = INT_MAX;
R[sj] = INT_MAX;
for (int k = 0; k < si; ++k) {
L[k] = A[i + k];
}
for (int k = 0; k < sj; ++k) {
R[k] = A[mid + 1 + k];
}
int topL = 0, topR = 0;
for (int k = 0; k < j - i + 1; ++k) {
if (L[topL] < R[topR]) {
A[i + k] = L[topL++];
} else {
A[i + k] = R[topR++];
}
}
free(L);
free(R);
}
void merge_sort(int i, int j, int *A) {
if (j <= i) {
return;
}
int mid = (i + j) / 2;
merge_sort(i, mid, A);
merge_sort(mid + 1, j, A);
merge(i, mid, j, A);
}
%%ANKI Basic Where in merge sort's implementation are sentinels useful? Back: As the last elements of the two arrays to combine. Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI
Basic
What sentinel values are typically used in merge sort's "merge" operation?
Back: \infty
or the record type's equivalent.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
%%ANKI Basic What sorting algorithm does the following demonstrate? ! Back: Merge sort. Reference: Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).
END%%
References
- Thomas H. Cormen et al., Introduction to Algorithms, 3rd ed (Cambridge, Mass: MIT Press, 2009).