34 KiB
title | TARGET DECK | FILE TAGS | tags | ||
---|---|---|---|---|---|
Trees | Obsidian::STEM | set::graph |
|
Overview
A free tree is a connected, acyclic, undirected graphs. If an undirected graph is acyclic but possibly disconnected, it is a forest.
%%ANKI Basic What is a free tree? Back: A connected, acyclic, undirected graph. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What is a forest? Back: An acyclic undirected graph. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What additional property must an undirected graph exhibit to be a forest? Back: It must be acyclic. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What additional properties must an undirected graph exhibit to be a free tree? Back: It must be acyclic and connected. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What additional properties must a forest exhibit to be a free tree? Back: It must be connected. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What additional properties must a free tree exhibit to be a forest? Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic If the following isn't a free tree, why not? ! Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic If the following isn't a free tree, why not? ! Back: Because it is disconnected. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic If the following isn't a free tree, why not? ! Back: Because it contains a cycle. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic If the following isn't a forest, why not? ! Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic If the following isn't a forest, why not? ! Back: N/A Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic If the following isn't a forest, why not? ! Back: Because it contains a cycle. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic How do free trees pictorially relate to forests? Back: A forest is drawn as one or more free trees. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
Rooted Trees
A rooted tree is a free tree in which one vertex is distinguished/blessed as the root. We call vertices of rooted trees nodes.
Let T
be a rooted tree with root r
. Any node y
on the simple path from r
to node x
is an ancestor of x
. Likewise, x
is a descendant of y
. If the last edge on the path from r
to x
is \{y, x\}
, y
is the parent of x
and x
is a child of y
. Nodes with the same parent are called siblings.
A node with no children is an external node or leaf. A node with at least one child is an internal node or nonleaf. The number of children of a node is the degree of said node. The length of the simple path from the root to a node x
is the depth of x
in T
. A level of a tree consists of all nodes at the same depth. The height of a node in a tree is the length of the longest simple path from the node to a leaf.
%%ANKI Basic What is a rooted tree? Back: A free tree in which one of the vertices is distinguished from the others. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is every rooted tree a free tree? Back: Yes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is every free tree a rooted tree? Back: No. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Which free trees are not considered rooted trees? Back: Those without some vertex identified as the root. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What distinguishes a node from a vertex? Back: A node is a vertex of a rooted tree. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is every vertex a node? Back: No. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is every node a vertex? Back: Yes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Cloze {Nodes} are to rooted trees whereas {vertices} are to free trees. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Which of free trees or rooted trees is a more general concept? Back: Free trees. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What does it mean for node y
to be an ancestor of node x
in a rooted tree?
Back: The simple path from the root to x
contains y
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What does it mean for node y
to be a descendent of node x
in a rooted tree?
Back: The simple path from the root to y
contains x
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Cloze
In a rooted tree, if y
is an {ancestor} of x
, then x
is a {descendant} of y
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What are the ancestors of a rooted tree's root? Back: Just the root itself. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What are the descendants of a rooted tree's root? Back: Every node in the tree. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What are the proper ancestors of a rooted tree's root? Back: There are none. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What are the proper descendants of a rooted tree's root? Back: Every node but the root. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What does it mean for node y
to be a child of node x
in a rooted tree?
Back: There exists a path from the root to y
such that the last edge is \{x, y\}
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What does it mean for node y
to be a parent of node x
in a rooted tree?
Back: There exists a path from the root to x
such that the last edge is \{y, x\}
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In a rooted tree, how does the concept of "ancestor" relate to "parent"? Back: Ancestors include parents, parents of parents, etc. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In a rooted tree, how does the concept of "descendants" relate to "child"? Back: Descendants include children, children of children, etc. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In a rooted tree, how many ancestors does a node have? Back: At least one (i.e. itself). Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In a rooted tree, how many parents does a node have? Back: Zero or one. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In a rooted tree, how many descendants does a node have? Back: At least one (i.e. itself). Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In a rooted tree, how many children does a node have? Back: Zero or more. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Which nodes in a rooted tree has no parent? Back: Just the root. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In a rooted tree, what are siblings? Back: Nodes that have the same parent. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In a rooted tree, what is an external node? Back: A node with no children. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In a rooted tree, what alternative term is used in favor of "external node"? Back: A leaf. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In a rooted tree, what is an internal node? Back: A node with at least one child. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic In a rooted tree, what alternative term is used in favor of "internal node"? Back: A nonleaf. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Cloze {1:External} nodes are to {2:leaf} nodes whereas {2:internal} nodes are to {1:nonleaf} nodes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let T
be a rooted tree. What does the degree of a node refer to?
Back: The number of children that node has.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let T
be a rooted tree. What does the depth of a node refer to?
Back: The length of the simple path from the root to the node.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let T
be a rooted tree. What does a level refer to?
Back: A set of nodes in T
that have the same depth.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let T
be a rooted tree. What does the height of a node refer to?
Back: The length of the longest simple path from said node to a leaf.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What is the height of a rooted tree in terms of "height"? Back: The height of its root. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What is the height of a rooted tree in terms of "depth"? Back: The largest depth of any node in the tree. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let T
be a rooted tree of height h
. Which nodes have height 0
?
Back: The external nodes.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let T
be a rooted tree of height h
. Which nodes have height h
?
Back: The root node.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let T
be a rooted tree of height h
. Which nodes have depth 0
?
Back: The root.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Let T
be a rooted tree of height h
. Which nodes have depth h
?
Back: The external nodes on the longest simple paths from the root to said nodes.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the height of this rooted tree?
!
Back: 4
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the height of node 4
in the following rooted tree?
!
Back: 1
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the depth of node 11
in the following rooted tree?
!
Back: 2
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which node has the largest depth in the following rooted tree?
!
Back: 9
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which node has the largest height in the following rooted tree?
!
Back: 7
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which nodes are on level 3
in the following rooted tree?
!
Back: 1
, 6
, and 5
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Which level has the most nodes in the following rooted tree? ! Back: The second level. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which nodes have depth corresponding to this rooted tree's height?
!
Back: 9
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which nodes have the most siblings in the following rooted tree?
!
Back: 3
, 10
, and 4
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which nodes are ancestors to 12
in the following rooted tree?
!
Back: 12
, 3
, and 7
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which nodes are descendants to 4
in the following rooted tree?
!
Back: 4
, 11
, and 2
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which nodes are parents of 6
in the following rooted tree?
!
Back: 8
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which nodes are children of 7
in the following rooted tree?
!
Back: 3
, 10
, and 4
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the internal nodes of the following rooted tree?
!
Back: 7
, 3
, 4
, 12
, 8
, and 5
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What are the external nodes of the following rooted tree?
!
Back: 10
, 11
, 2
, 1
, 6
, and 9
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What level does node 6
reside on in the following rooted tree?
!
Back: 3
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
Ordered Trees
An ordered tree is a rooted tree in which the children of each node are ordered.
%%ANKI Basic What is an ordered tree? Back: A rooted tree in which the children of each node are ordered. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Which of ordered trees or rooted trees is the more general concept? Back: Rooted trees. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Which of free trees or ordered trees is the more general concept? Back: Free trees. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is every rooted tree an ordered tree? Back: No. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is every ordered tree a rooted tree? Back: Yes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic The following two trees are equivalent when considered as what kind of trees? ! Back: Rooted/free trees. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic The following two trees are different when considered as what kind of trees? ! Back: Ordered trees. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Considered as rooted trees, are the following trees the same? ! Back: Yes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Considered as ordered trees, are the following trees the same? ! Back: Yes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Considered as binary trees, are the following trees the same? ! Back: No. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
Binary Trees
A binary tree T
is a structure defined on a finite set of nodes that either
- contains no nodes, or
- is composed of three disjoint sets of nodes: a root node, a left subtree, and a right subtree.
%%ANKI Basic What is the base case used in the recursive definition of a binary tree? Back: The empty set. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What recurrence is used in the recursive definition of a binary tree? Back: A binary tree is composed of a root node, a left subtree, and a right subtree. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
How should the nil constructor of an inductive binary tree, say Tree
, be defined?
Back:
| constructor : Tree α
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: lean
END%%
%%ANKI
Basic
How should the non-nil constructor of an inductive binary tree, say Tree
, be defined?
Back:
| constructor : α → Tree α → Tree α → Tree α
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: lean
END%%
%%ANKI
Basic
In the following binary tree type, what name is given to the first argument of node
?
inductive Tree α where
| nil : Tree α
| node : α → Tree α → Tree α → Tree α
Back: The root node. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: lean
END%%
%%ANKI
Basic
In the following binary tree type, what name is given to the second argument of node
?
inductive Tree α where
| nil : Tree α
| node : α → Tree α → Tree α → Tree α
Back: The left subtree. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: lean
END%%
%%ANKI
Basic
In the following binary tree type, what name is given to the third argument of node
?
inductive Tree α where
| nil : Tree α
| node : α → Tree α → Tree α → Tree α
Back: The right subtree. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022). Tags: lean
END%%
%%ANKI Basic Given the following binary tree implementation, how do you construct an empty tree?
inductive Tree α where
| nil : Tree α
| node : α → Tree α → Tree α → Tree α
Back: nil
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: lean
END%%
%%ANKI
Basic
Given the following binary tree implementation, how do you construct a tree with root a
, left child b
, and right child c
?
inductive Tree α where
| nil : Tree α
| node : α → Tree α → Tree α → Tree α
Back: node 'a' (node 'b' nil nil) (node 'c' nil nil)
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: lean
END%%
%%ANKI Basic Why isn't a binary tree considered an ordered tree? Back: A left child is distinct from a right child, even if the child is the same in both cases. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Is a binary tree a k
-ary tree?
Back: Yes.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
ANKI%%
Is a k
-ary tree a positional tree?
Back: Yes.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
ANK%%
Is a positional tree a k
-ary tree?
Back: Not necessarily.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Why are these two binary trees not the same?
!
Back: 5
is a left child in the first tree but a right child in the second.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
Positional Trees
A positional tree is a rooted tree in which each child is labeled with a specific positive integer. A k
-ary tree is a positional tree with at most k
children/labels. A binary tree is a 2
-ary tree.
A k
-ary tree is full if every node has degree 0
or k
. A k
-ary tree is complete if all leaves have the same depth and all internal nodes have degree k
.
%%ANKI
Basic
What does it mean for a binary tree to be full?
Back: Each node has 0
or 2
children.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
What does it mean for a binary tree to be complete?
Back: Each leaf has the same depth and all internal nodes have degree 2
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
What degrees are permitted in a full binary tree?
Back: 0
or 2
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
What degrees are permitted in a complete binary tree?
Back: 0
or 2
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
What category of rooted tree does a binary tree fall under?
Back: A positional tree or k
-ary tree.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What distinguishes a positional tree from a k
-ary tree?
Back: A k
-ary tree is a positional tree in which each node has at most k
children.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What distinguishes positional trees from ordered trees? Back: The same children in different positions is considered distinct in the former. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic What is a positional tree? Back: A rooted tree in which each child is labeled with a specific positive integer. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is a k
-ary tree?
Back: A positional tree in which each node has k
labels with a potential child.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which of positional trees or k
-ary trees are more general?
Back: The positional tree.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Which of positional trees or k
-ary trees are more general?
Back: The positional tree.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI Basic Is a binary tree a positional tree? Back: Yes. Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Is the concept of fullness related to positional trees or k
-ary trees?
Back: k
-ary trees.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
Is the concept of completeness related to positional trees or k
-ary trees?
Back: k
-ary trees.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What does it mean for a k
-ary tree to be full?
Back: Each node has 0
or k
children.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What degrees are permitted in a full k
-ary tree?
Back: 0
or k
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What degrees are permitted in a complete k
-ary tree?
Back: 0
or k
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What does it mean for a k
-ary tree to be complete?
Back: All leaves have the same depth and all internal nodes have degree k
.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the degree of an internal node in a complete k
-ary tree'?
Back: k
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the degree of an external node in a complete k
-ary tree'?
Back: 0
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
How many levels exist in a rooted tree of height h
?
Back: h + 1
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What is the height of a rooted tree with k
levels?
Back: k - 1
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
END%%
%%ANKI
Basic
What recursive definition describes the number of nodes in each level of a complete k
-ary tree?
Back: a_n = k \cdot a_{n-1}
with a_0 = 1
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
END%%
%%ANKI
Basic
What closed formula details the number of nodes in a complete k
-ary tree of height h
?
Back: \frac{1 - k^h}{1 - k}
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
END%%
%%ANKI
Basic
What kind of sequence describes the number of nodes in a complete k
-ary tree?
Back: A geometric sequence.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
END%%
%%ANKI
Basic
What is the common ratio in the geometric sequence counting nodes of a complete k
-ary tree?
Back: k
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
END%%
%%ANKI
Basic
How many nodes are in a complete binary tree of height h
?
Back: \frac{1 - 2^h}{1 - 2} = 2^h - 1$$
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
Tags: algebra::sequence
END%%
Bibliography
- Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).