12 KiB
title | TARGET DECK | FILE TAGS | tags | ||
---|---|---|---|---|---|
Sequences | Obsidian::STEM | algebra::sequence |
|
Overview
A sequence is an ordered list of numbers. These are usually represented as a closed formula or a recursive definition.
%%ANKI Basic What is a sequence? Back: An ordered list of values. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How does sequence 0, 1, 2, \ldots
differ from set \mathbb{N}
?
Back: Order matters in the former.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How is sequence a_1, a_2, \ldots
more compactly denoted?
Back: (a_n)_{n \geq 1}
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What is the first index of (a_n)_{n \geq 1}
?
Back: 1
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What terms make up the expanded form of sequence (a_n)_{n \geq 0}
?
Back: a_0, a_1, a_2, \ldots
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What term refers to the subscripts in sequence a_0, a_1, a_2, \ldots
?
Back: Indices.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic How do functions and sequences relate to one another? Back: Every sequence is equivalent to a function mapping index to value. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How is sequence a_0, a_1, a_2, \ldots
interpreted as a function?
Back: As a function that assigns n \mapsto a_n
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What two methods allow exact specification of a sequence? Back: Closed formulas and recursive definitions. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What is a closed formula for sequence e.g. (a_n)_{n \geq 0}
?
Back: A formula that can be computed using a fixed number of "well-known" standard operations, independent of n
.
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
END%%
%%ANKI
Cloze
{n!
} is a closed formula even though equivalent expression {\Pi_{k=1}^n k
} is not.
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
END%%
%%ANKI
Basic
Why is \Pi_{k=1}^n k
not considered a closed formula?
Back: The number of "well-known" standard operations (i.e. multiplications) scale with n
.
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
END%%
%%ANKI
Basic
Why is n!
considered a closed formula?
Back: Because the factorial operation is considered a "well-known" standard operation.
Reference: Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed (Reading, Mass: Addison-Wesley, 1994).
END%%
%%ANKI Basic What two parts make up a recursive definition of a sequence? Back: The recurrence relation and an initial condition. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What distinguishes a recurrence relation and a recursive definition? Back: A recursive definition includes a recurrence relation along with an initial condition. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How is sequence (a_n)_{n \geq 0} = 1, 2, 4, 8, \ldots
represented as a closed formula?
Back: a_n = 2^n
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How is sequence (a_n)_{n \geq 0} = 1, 2, 4, 8, \ldots
represented as a recursive definition?
Back: a_n = 2 \cdot a_{n-1}
with a_0 = 1
.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Cloze It is harder to find {terms of a sequence} with a recursive definition than closed formula. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic Which is considered easier to find: closed formulas or recursive definitions? Back: Recursive definitions. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What general strategy is typically employed when finding a closed formula for a sequence? Back: First find a recursive definition. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
Solving Recurrence Relations
%%ANKI
Basic
What is the recurrence relation for the Fibonacci sequence?
Back: F_n = F_{n-1} + F_{n-2}
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What does it mean to solve a recurrence relation? Back: To find a closed formula satisfying the relation and initial conditions. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What does it mean for a sum to be telescoping? Back: Pairs of consecutive terms in the summation cancel each other out. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What imagery is invoked by the term "telescoping" with respect to a sum? Back: A collapsing telescope. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI Basic What summands typically remain after evaluating a telescoping sum? Back: The first and the last. Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What is the result of the following after observing telescoping? (2 - 1) + (3 - 2) + \cdots + (100 - 99) + (101 - 100)
Back:
-1 + 101
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
How is the following rewritten to highlight telescoping? (2 - 1) + (3 - 2) + \cdots + (100 - 99) + (101 - 100)
Back:
(-1 + 2) + (-2 + 3) + \cdots + (-99 + 100) + (-100 + 101)
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What is the result of the following? \sum_{n=1}^N (a_n - a_{n-1})
Back: a_N - a_0
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What property is used to quickly verify the following identity? \sum_{n=1}^N (a_n - a_{n-1}) = a_N - a_0$$
Back: This is a telescoping sum.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
Schematically show how telescoping can be used to solve a_n = a_{n-1} + f(n)
.
Back: \begin{align*}
a_1 - a_0 & = f(1) \
& \vdots \
a_n - a_{n-1} & = f(n) \
\hline
a_n - a_0 & = \sum_{k=1}^n f(k)
\end{align*}
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What is the closed formula of recurrence a_n = a_{n-1} + f(n)
?
Back: a_n = a_0 + \sum_{k=1}^n f(k)
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
%%ANKI
Basic
What summation property can be used to derive the closed formula of a_n = a_{n-1} + f(n)
?
Back: Telescoping.
Reference: Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
END%%
Bibliography
- Oscar Levin, Discrete Mathematics: An Open Introduction, 3rd ed., n.d., https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf.
- Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed (Reading, Mass: Addison-Wesley, 1994).