2.7 KiB
2.7 KiB
title | TARGET DECK | FILE TAGS | tags | |
---|---|---|---|---|
Truth Tables | Obsidian::STEM | logic |
|
Overview
Every proposition can be written in disjunctive normal form (DNF) and conjunctive normal form (CNF). This is evident with the use of truth tables. To write a proposition in DNF, write its corresponding truth table and \lor
each row that evaluates to T
. To write the same proposition in CNF, apply \lor
to each row that evaluates to F
and negate it.
\neg (a \Rightarrow b) \Leftrightarrow c
It's truth table looks like
\begin{array}{c|c|c|c|c|c}
\neg & (a & \Rightarrow & b) & \Leftrightarrow & c \\
\hline
F & T & T & T & F & T \\
F & T & T & T & T & F \\
T & T & F & F & T & T \\
T & T & F & F & F & F \\
F & F & T & T & F & T \\
F & F & T & T & T & F \\
F & F & T & F & F & T \\
F & F & T & F & T & F
\end{array}$$
and it's DNF looks like
(a \land b \land \neg c) \lor (a \land \neg b \land c) \lor (\neg a \land b \land \neg c) \lor (\neg a \land \neg b \land \neg c)
It's CNF results from applying De Morgan's Law to the truth table's "complement":
\neg( (a \land b \land c) \lor (a \land \neg b \land \neg c) \lor (\neg a \land b \land c) \lor (\neg a \land \neg b \land c) )
%%ANKI
Basic
What construct is used to prove every proposition can be written in DNF or CNF?
Back: Truth tables
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707311868994-->
END%%
%%ANKI
Basic
Where are $\land$ and $\lor$ found within a DNF proposition?
Back: $\lor$ separates disjuncts containing $\land$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707311868998-->
END%%
%%ANKI
Basic
What is DNF an acronym for?
Back: **D**isjunctive **N**ormal **F**orm.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707311869000-->
END%%
%%ANKI
Basic
What is CNF an acronym for?
Back: **C**onjunctive **N**ormal **F**orm.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707311869002-->
END%%
%%ANKI
Basic
Where are $\land$ and $\lor$ found within a CNF proposition?
Back: $\land$ separates conjuncts containing $\lor$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707311869003-->
END%%
## Bibliography
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.