notebook/notes/set/classes.md

276 lines
9.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
title: Classes
TARGET DECK: Obsidian::STEM
FILE TAGS: set::class
tags:
- class
- set
---
## Overview
The **Zermelo-Fraenkel alternative** avoids speaking of collections defined using set theoretical notation that are not sets. The **von Neumann-Bernays** alternative calls these **classes**.
%%ANKI
Basic
In set theory, what is a class?
Back: A collection defined using set theoretical notation that isn't a set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576758-->
END%%
%%ANKI
Basic
Which two alternatives are usually employed when speaking of classes?
Back: The Zermelo-Fraenkel alternative and the von Neumann-Bernays alternative.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576761-->
END%%
%%ANKI
Basic
What does the Zermelo-Fraenkel alternative say about classes?
Back: It gives it no ontological status at all.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576763-->
END%%
%%ANKI
Basic
What does the von Neumann-Bernays alternative say about classes?
Back: It refers to objects defined using set theory but that aren't actually sets.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576765-->
END%%
%%ANKI
Cloze
The {1:Zermelo}-{2:Fraenkel} alternative is a separate approach from the {2:von Neumann}-{1:Bernays} alternative.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576766-->
END%%
%%ANKI
Basic
Which set theory alternative avoids the term "class"?
Back: The Zermelo-Fraenkel alternative.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576768-->
END%%
%%ANKI
Basic
Which set theory alternative embraces the term "class"?
Back: The von Neumann-Bernays alternative.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576769-->
END%%
%%ANKI
Basic
What kind of mathematical object is $\{x \mid x \neq x\}$?
Back: A set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576771-->
END%%
%%ANKI
Basic
What kind of mathematical object is $\{x \mid x = x\}$?
Back: A class.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576774-->
END%%
%%ANKI
Basic
Are sets or classes more general?
Back: Classes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576777-->
END%%
%%ANKI
Basic
Is every set a class?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576779-->
END%%
%%ANKI
Basic
Is every class a set?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576781-->
END%%
%%ANKI
Basic
Assuming entrance requirement $\_\_\_$, what kind of mathematical object is $\{x \mid \_\_\_\}$?
Back: A class.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576782-->
END%%
## Russell's Paradox
Let $R = \{x \mid x \not\in x\}$. Then $R \in R \Leftrightarrow R \not\in R$.
%%ANKI
Basic
What simpler set is $\{x \mid x \neq x\}$ equivalent to?
Back: The empty set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576772-->
END%%
%%ANKI
Basic
Is $\{x \mid x \neq x\}$ a set?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074591194-->
END%%
%%ANKI
Basic
What simpler set is $\{x \mid x = x\}$ equivalent to?
Back: N/A. This is a class.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1715970576775-->
END%%
%%ANKI
Basic
Is $\{x \mid x = x\}$ a set?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074591199-->
END%%
%%ANKI
Basic
What simpler set is $\{x \mid x \in x\}$ equivalent to?
Back: The empty set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074591202-->
END%%
%%ANKI
Basic
Is $\{x \mid x \in x\}$ a set?
Back: Yes.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074610694-->
END%%
%%ANKI
Basic
What simpler set is $\{x \mid x \not\in x\}$ equivalent to?
Back: N/A. This is a class.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074591205-->
END%%
%%ANKI
Basic
Is $\{x \mid x \not\in x\}$ a set?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1716074610697-->
END%%
%%ANKI
Basic
Let $R = \{x \mid x \not\in x\}$. What biconditional demonstrates a paradox?
Back: $R \in R \Leftrightarrow R \not\in R$
Reference: “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
<!--ID: 1716075743527-->
END%%
%%ANKI
Basic
Given $R = \{x \mid x \not\in x\}$, what contradiction arises when we assume $R \in R$?
Back: The entrance requirement says $R \not\in R$.
Reference: “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
<!--ID: 1716075811572-->
END%%
%%ANKI
Basic
Given $R = \{x \mid x \not\in x\}$, what contradiction arises when we assume $R \not\in R$?
Back: $R$ satisfies the entrance requirement meaning $R \in R$.
Reference: “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
<!--ID: 1716075811577-->
END%%
%%ANKI
Basic
What special name is given to class $\{x \mid x \not\in x\}$?
Back: The Russell set.
Reference: “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
<!--ID: 1716075743531-->
END%%
%%ANKI
Basic
Explain how the Russell set is defined in plain English.
Back: It is the "set" of all sets that do not contain themselves.
Reference: “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
<!--ID: 1716075743534-->
END%%
%%ANKI
Basic
What is the entrance requirement of the Russell set?
Back: $x \not\in x$
Reference: “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
<!--ID: 1716075743537-->
END%%
%%ANKI
Basic
The barber paradox is a variant of what other paradox?
Back: Russell's paradox.
Reference: “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
<!--ID: 1716075743540-->
END%%
%%ANKI
Basic
What does the barber paradox assume existence of?
Back: A barber who shaves all those, and those only, who do not shave themselves.
Reference: “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
<!--ID: 1716075743544-->
END%%
%%ANKI
Basic
What question is posed within the barber paradox?
Back: Does the barber shave himself?
Reference: “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
<!--ID: 1716075743547-->
END%%
%%ANKI
Basic
In the barber paradox, what contradiction arises when we assume the barber shaves himself?
Back: The barber *only* shaves those who do not shave themselves.
Reference: “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
<!--ID: 1716075743551-->
END%%
%%ANKI
Basic
In the barber paradox, what contradiction arises when we assume the barber does not shave himself?
Back: The barber shaves *all* men who do not shave themselves.
Reference: “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).
<!--ID: 1716075743555-->
END%%
## Bibliography
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
* “Russells Paradox,” in *Wikipedia*, April 18, 2024, [https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437](https://en.wikipedia.org/w/index.php?title=Russell%27s_paradox&oldid=1219576437).